Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery

전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성

  • Baek, Young-Min (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 백영민 (충남대학교 바이오응용화학과) ;
  • 곽노석 (충남대학교 바이오응용화학과) ;
  • 황택성 (충남대학교 바이오응용화학과)
  • Received : 2011.06.01
  • Accepted : 2011.07.28
  • Published : 2011.11.25

Abstract

In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-styreneco-hydroxyethyl acrylate(VBC-co-St-co-HEA) 공중합체를 합성하였으며, 아민화 및 가교 반응을 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR, $^1H$ NMR, TGA, GPC 분석을 하였으며, 음이온교환막의 함수율, 이온교환용량, 전기저항, 이온전도도 및 전바나듐 레독스-흐름 전지의 효율을 측정하였다. 음이온교환막의 이온교환용량, 전기저항, 이온전도도는 각각 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm이었으며, 전바나듐 레독스-흐름 전지 효율 실험 결과 충 방전효율, 전압효율 및 에너지효율은 각각 99.5, 72.6, 72.1%이었다.

Keywords

References

  1. V. M. Barragan, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauza, and B. Seoane, J. Colloid Interface Sci., 333, 497 (2009). https://doi.org/10.1016/j.jcis.2009.02.015
  2. D. H. Lee, Y. S. Kang, and J. H. Kim, Macromol. Res., 17, 104 (2009). https://doi.org/10.1007/BF03218662
  3. M. Pourbaix, Atlas of electrochemical Equilibra in Aqueous Solutions, National Association of Corrsion Engineers, Houston, 1982.
  4. H. ohya, T. Ohto, T. Sawamura, H. Honda, K. Matsumoto, and Y. Negish, Denki Kagaku, 56, 34 (1988).
  5. F de Korosy and J. Shorr, DeChema Mogr., 47, 477 (1992).
  6. C. J. Rydh, J. Power Sources, 80, 21 (1999). https://doi.org/10.1016/S0378-7753(98)00249-3
  7. A. Shibata and K. Sato, Power Eng. J., 13, 130 (1993).
  8. Ch. Fabjan, J. Garche, B. Harrer, L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, and F. Wagner, Electrochim. Acta, 47, 825 (2001). https://doi.org/10.1016/S0013-4686(01)00763-0
  9. T. Mohammadi and M.S. Kazacos, J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  10. G. J. Hwang and H. Ohya, J. Membrane Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  11. Q. Luo, H. Zhang, J. Chen, P. Qian, and Y. Zhai, J. Membrane Sci., 311, 98 (2008). https://doi.org/10.1016/j.memsci.2007.11.055
  12. J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, and G. Wei, J. Membrane Sci., 297, 174 (2007). https://doi.org/10.1016/j.memsci.2007.03.042
  13. Z. Mai, H. Zhang, X. Li, S. Xiao, and H. Zhang, J. Power Sources, 10, 1016 (2010).
  14. Y. Choi, H. S. Lee, and T. S. Hwang, Polymer(Korea), 33, 608 (2007).
  15. K. J. Choi, J. H. Choi, E. H. Hwang, Y. W. Rhee, and T. S. Hwang, Polymer(Korea), 31, 247 (2007).
  16. D. J. Kim, B. J. Chang, J. H. Kim, S. B. Lee, and H. J. Joo, Memb. J., 16, 221 (2006).
  17. B. Y. Jeong, S. H. Song, K. W. Baek, I. H. Cho, and T. S. Hwang, Polymer(Korea), 30, 486 (2006).
  18. I. H. Cho, K. W. Baek, C. S. Lee, Y. C. Nho, S. K. Yoon, and T. S. Hwang, Polymer(Korea), 31, 239 (2007).
  19. X Luo, Z. Lu, Z. Wu, W. Zhu, and X. Qui, J. Phys. Chem., 109, 20310 (2005). https://doi.org/10.1021/jp054092w
  20. M. S. Kazacos, G. Kazacos, G. Poon, and H. Verseema, Int. Energ. Conv. Manag., 51, 2816 (2010). https://doi.org/10.1016/j.enconman.2010.06.019
  21. W. H. Ting, S. A. Dai, Y. F. Shih, I. K. Yang, W. C. Su, and R. Jeng, Poymer, 49, 1497 (2008).
  22. J. F. Quinn, R. P. Chaplin, and T. P. Davis, J. Polym. Sci. Part A: Polym. Chem., 40, 2956 (2002). https://doi.org/10.1002/pola.10369
  23. R. Paris and J. Fuenta, J. Polym. Sci. Part A: Polym. Chem., 45, 2538 (2007).
  24. M. A. Dube and A. Penlidis, Polymer, 36, 587 (1995). https://doi.org/10.1016/0032-3861(95)91568-R
  25. J. C. Yang, M. J. Jablonsky, and J. W. Mays, Polymer, 43, 5125 (2002). https://doi.org/10.1016/S0032-3861(02)00390-7
  26. Y. J. Choi, M. S. Kang, J. Cho, and S. H. Moon, J. Membrane Sci., 221, 219 (2003). https://doi.org/10.1016/S0376-7388(03)00265-5
  27. G. Y. Moon and J. W. Rhim, Macromol. Res., 15, 379 (2007). https://doi.org/10.1007/BF03218802
  28. H. S. Lee, A. Roy, A. S. Badami, and J. E. McGrath, Macromol. Res., 15, 160 (2007). https://doi.org/10.1007/BF03218768
  29. J. Li, C. H. Lee, H. B. Park, and Y. M. Lee, Macromol. Res., 14, 438 (2006). https://doi.org/10.1007/BF03219107
  30. J. S. Lee, M. Yoo, B. J. Chang, J. H. Kim, H. Kang, and S. Lee, Memb. J., 18, 138 (2008).