Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites

산소 플라즈마 처리된 그래핀 산화물이 PMMA/수산화알루미늄 컴포지트의 기계적 물성에 미치는 영향

  • Kim, Hyo-Chul (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Jeon, Son-Yeo (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Choi, Ho-Suk (Department of Chemical Engineering, Chungnam National University) ;
  • Hong, Min-Hyuk (Lion Chemtech Co., Ltd.) ;
  • Choi, Ki-Seop (Lion Chemtech Co., Ltd.)
  • 김효철 (충남대학교 공과대학 정밀응용화학과) ;
  • 전소녀 (충남대학교 공과대학 정밀응용화학과) ;
  • 김형일 (충남대학교 공과대학 정밀응용화학과) ;
  • 최호석 (충남대학교 공과대학 화학공학과) ;
  • 홍민혁 ((주)라이온켐텍) ;
  • 최기섭 ((주)라이온켐텍)
  • Received : 2011.04.29
  • Accepted : 2011.06.05
  • Published : 2011.11.25

Abstract

The nanocomposites containing graphene oxide (GO) were prepared in order to improve the mechanical properties of poly(methyl methacrylate)/aluminum hydroxide (PMMA/AH) composites. GO was prepared from graphite by oxidation of Hummers method followed by exfoliation with thermal treatment. The surface of GO was modified by oxygen plasma in various exposure times from 0 to 70 min to improve interfacial compatibility. Compared with PMMA/AH composites, the nanocomposites containing GO modified with oxygen plasma for the exposure time up to 50 min showed significant increases in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fracture surface showed an improved interfacial adhesion between PMMA/AH composites and GO, which was properly treated with oxygen plasma. The mechanical properties of nanocomposites were deteriorated by increasing the content of GO above 0.07 phr due to the nonuniform dispersion of GO.

Poly(methyl methacrylate)/aluminum hydroxide(PMMA/AH) 컴포지트의 기계적 강도를 향상시키기 위해 그래핀 산화물(GO)을 충전제로 사용하여 나노컴포지트를 제조하였다. GO는 흑연을 Hummers법으로 산화한 후 열처리에 의해 박리시켜 제조하였다. PMMA/AH 컴포지트 매트릭스와의 계면혼화성을 향상시키기 위해 산소 플라즈마를 사용하여 노출 시간을 0분에서 70분까지 변화를 주어가며 GO 표면을 개질시켰다. 노출 시간이 50분까지 증가함에 따라 산소 플라즈마 처리한 GO를 충전제로 사용한 나노컴포지트는 PMMA/AH 컴포지트에 비해 굴곡강도, 굴곡탄성률, Rockwell 경도, Barcol 경도, Izod 충격강도 모두 현저히 증가하였다. 적절한 조건에서 산소 플라즈마 처리된 GO는 PMMA/AH 컴포지트 매트릭스와의 계면접착력이 매우 우수함을 파단면 모폴로지로부터 확인하였다. 하지만 GO의 함량이 0.07 phr 이상으로 증가하면 충전제의 분산이 균일하지 못하여 나노컴포지트의 기계적 강도는 오히려 감소하는 경향을 나타내었다.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  3. K. S. Novoselov A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  4. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  5. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, Science, 312, 1191 (2006). https://doi.org/10.1126/science.1125925
  6. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  7. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  8. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  9. Y. W. Tan, Y. B. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J., 148, 15 (2007).
  10. R. A. Greinke and R. A. Reyolds, U. S. Patent 6,416,815 (2002).
  11. J. H. Han, K. W. Cho, K. H. Lee, and H. Kim, Carbon, 36, 1801 (1998). https://doi.org/10.1016/S0008-6223(98)00150-X
  12. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004). https://doi.org/10.1126/science.1101398
  13. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  14. R. D. Astumian and Z. A. Schelly, J. Am. Chem. Soc., 106, 304 (1984). https://doi.org/10.1021/ja00314a008
  15. D. W. Dwight and W. M. Riggs, J. Colloid Interf. Sci., 47, 650 (1974). https://doi.org/10.1016/0021-9797(74)90242-2
  16. D. Hegemann, H. Brunner, and C. Oehr, Nucl. Instrum. Methods Phys. Res. B, 208, 281 (2003). https://doi.org/10.1016/S0168-583X(03)00644-X
  17. J. R. Chen, X. Y. Wang, and W. Tomiji, J. Appl. Polym. Sci., 72, 1327 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990606)72:10<1327::AID-APP13>3.0.CO;2-0
  18. N. Inagaki, K. Narushim, N. Tuchida, and K. Miyazaki, J. Polym. Sci. Part B: Polym. Phys., 42, 3727 (2004). https://doi.org/10.1002/polb.20234
  19. S. Okuji, M. Sekiya, M. Nakabayashi, H. Endo, N. Sakudo, and K. Nagai, Nucl. Instrum. Methods Phys. Res. B, 242, 353 (2006). https://doi.org/10.1016/j.nimb.2005.08.153
  20. K. Dworecki, M. Drabilc, T. Hasegawa, and S. Wasik, Nucl. Instrum. Methods Phys. Res. B, 225, 483 (2004). https://doi.org/10.1016/j.nimb.2004.05.024
  21. I. Novak, V. Pollák, and I. Chodak, Plasma Process Polym., 3, 355 (2006). https://doi.org/10.1002/ppap.200500163
  22. S. Süzer, A. Argun, O. Vatansever, and O. Aral, J. Appl. Polym. Sci., 74, 1846 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1846::AID-APP29>3.0.CO;2-B
  23. I. Mathieson and R. H. Bradley, Int. J. Adhes. Adhes., 16, 29 (1996). https://doi.org/10.1016/0143-7496(96)88482-X
  24. M. B. Horn, Acrylic Resins, Reinhold Publishing, New York, 1960.
  25. H. Riddle, Monomeric Acrylic Esters, Reinhold Publishing Co., New York, 1954.
  26. H. Coyard, P. Deligny, N. Tuck, and P. Oldring, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York, 2001.
  27. W. Hummers and R. Offeman J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  28. G. Wang, X. Shen, J. Yao, and J. Park, Carbon, 47, 2049 (2009). https://doi.org/10.1016/j.carbon.2009.03.053
  29. S. H Kim, D. J. Choi, J. S. Lee, and H. S. Choi, Polymer (Korea), 33, 263 (2009).
  30. Y. Geng, S. J. Wang, and J. K. Kim, J. Colloid Interf. Sci., 336, 592 (2009). https://doi.org/10.1016/j.jcis.2009.04.005
  31. J. F. Shen, N. Li, M. Shi, Y. Z. Hu, and M. X. Ye, J. Colloid Interf. Sci., 348, 377 (2010). https://doi.org/10.1016/j.jcis.2010.04.055
  32. S. S. Barton, J. Colloid Interf. Sci., 179, 449 (1996). https://doi.org/10.1006/jcis.1996.0236
  33. R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met., 156, 1023 (2006). https://doi.org/10.1016/j.synthmet.2006.06.024
  34. T. Nakajima, A. Mabuchi, and R. Hagiwara, Carbon, 26, 357 (1988). https://doi.org/10.1016/0008-6223(88)90227-8
  35. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  36. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  37. C. Hontoria-Lucas, A. J. Lopez-Peinado, J. Lopez-Gonzalez, M. L. Rojas-Cervantes, and R. M. Martin-Aranda, Carbon, 33, 1585 (1995). https://doi.org/10.1016/0008-6223(95)00120-3
  38. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol., 3, 538 (2008). https://doi.org/10.1038/nnano.2008.210
  39. T. Chiang and F. Seitz, Ann. Phys., 10, 61 (2001). https://doi.org/10.1002/1521-3889(200102)10:1/2<61::AID-ANDP61>3.0.CO;2-G
  40. S. Yumitori, J. Mater. Sci., 35, 139 (2000). https://doi.org/10.1023/A:1004761103919
  41. C. Kozlowski and P. Sherwood, J. Chem. Soc. Farad. Trans. 1-Phys. Chem. Condensed Phases, 80, 2099 (1984).
  42. M. I. Awad, M. Saleh, and T. Ohsaka, J. Solid State Electr., 12, 251 (2008). https://doi.org/10.1007/s10008-007-0385-2
  43. G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  44. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  45. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, Carbon, 47, 145 (2009). https://doi.org/10.1016/j.carbon.2008.09.045
  46. T. Mori and K. Tanaka, Acta Metall., 21, 571 (1973). https://doi.org/10.1016/0001-6160(73)90064-3
  47. Y. Benveniste, Mech. Mater., 6, 147 (1987). https://doi.org/10.1016/0167-6636(87)90005-6
  48. G. M. Odegard and T. S. Gates, J. Intell. Mater. Syst. Struct., 17, 239 (2006). https://doi.org/10.1177/1045389X06057523
  49. R. M. Christensen, J. Mech. Phys. Solids, 38, 379 (1990). https://doi.org/10.1016/0022-5096(90)90005-O
  50. C. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999). https://doi.org/10.1016/S0266-3538(98)00120-1
  51. H. Liu and L. Brinson, J. Appl. Mech., 73, 758 (2006). https://doi.org/10.1115/1.2204961
  52. J. J. Luo and I. M. Daniel, Compos. Sci. Technol., 63, 607 (2003).
  53. L. Shen and J. K. Li, Proc. Roy. Soc. a-Math. Phys. Eng. Sci., 461, 2057 (2005).