DOI QR코드

DOI QR Code

A GENERALIZED 4-STRING SOLUTION TANGLE OF DNA-PROTEIN COMPLEXES

  • Kim, Soo-Jeong (DEPARTMENT OF APPLIED MATHEMATICAL AND COMPUTATIONAL SCIENCES, UNIVERSITY OF IOWA)
  • Received : 2011.04.04
  • Accepted : 2011.06.24
  • Published : 2011.09.23

Abstract

An n-string tangle is a three dimensional ball with n strings properly embedded in it. A tangle model of a DNA-protein complex is first introduced by C. Ernst and D. Sumners in 1980's. They assumed the protein bound DNA as strings and the protein as a three dimensional ball. By using a tangle analysis, one can predict the topology of DNA within the complex. S.Kim and I. Darcy developed the biologically reasonable 4-string tangle equations and decided a solution tangle, called R-standard tangle. The author discussed more about the simple solution tangles of the equations and found a generalized R-standard tangle solution.

Keywords

References

  1. A.D. Bates and A. Maxwell, DNA Topology, IRL Press Oxford, 1993.
  2. W. R. Bauer, F. H. C. Crick, and J. H. White, Supercoiled DNA, Scientific American 243 (1980), 118-133.
  3. J.H. Conway, An enumaration of knots and links and some of their related properties, Computational Problems in Abstract Algebra (John Leech, ed.) Pergamon Press, Oxford and New York 1969.
  4. I. K. Darcy, A. Bhutra, J. Chang, N. Druivenga, C. McKinney, R. K. Medikonduri, S. Mills, J. Navarra Madsen, A. Ponnusamy, J. Sweet, and T. Thompson, Coloring the Mu transpososome, BMC Bioinformatics, 7:Art. No. 435 (2006).
  5. I.K. Darcy, J. Luecke, and M. Vazquez, Tangle analysis of difference topology experiments: Applications to a Mu protein-dna complex, Algebraic and Geometric Topology, 9 (2009), 2247-2309. https://doi.org/10.2140/agt.2009.9.2247
  6. F.B. Dean, A. Stasiak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by Escherichia Coli topoisomerase I, J. Biol. Chem., 260 (1985), 4795-4983.
  7. C. Ernst and D.W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Camb. Phil. Soc., 108 (1990), 489-515. https://doi.org/10.1017/S0305004100069383
  8. C. Ernst and D. W. Sumners, Solving tangle equations arising in a DNA recombination model, Math. Proc. Camb. Phil. Soc., 126 (1990), 23-36.
  9. M. Hirasawa and K. Shimokawa, Dehn surgeries on strongly invertible knots which yield lens spaces, Proc. Amer. Math. Soc., 128 (2000) 3445-3451. https://doi.org/10.1090/S0002-9939-00-05417-4
  10. S. Kim and I. Darcy, Topological Analysis of DNA-protein complexes, Mathematics of DNA Structure, function and interacctions, The IMA volumes in Mathematics and its applications, Springer Science + Business Media, LLC, New York, 2009
  11. S. Kim and I. Darcy, A 4-string tangle analysis of DNA-protein complexes based on difference topology, Preprint (2009)
  12. P. Kronheimer, T. Mrowka, P. Ozsvath, and Z. Szabo, Monopoles and lens space surgeries, Ann. of Math., 165(2) (2007), 457-546. https://doi.org/10.4007/annals.2007.165.457
  13. B. Lewin, Genes, Oxford University Press, 5th ed., New York, 1994.
  14. S. Pathania, M. Jayaram, and R. M. Harshey, Path of DNA within the Mu transpososome: transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils, Cell, 109(4) (2002), 425-436. https://doi.org/10.1016/S0092-8674(02)00728-6
  15. D. Rolfsen, Knots And Links, AMS Chelsea Publishing, Providence, Rhode Island, 1976.
  16. Y. Saka and M. Vazquez, Tanglesolve: topological analysis of site-specific recombination, Bioinformatics, 18 (2002), 1011-1012. https://doi.org/10.1093/bioinformatics/18.7.1011
  17. S.J. Spengler, A. Stasiak, and N.R. Cozzarelli, The stereostructure of knots and catenanes produced by phage $\lambda$ integrative recombination : implications for mechanism and DNA structure, Cell, 42 (1985), 325-334. https://doi.org/10.1016/S0092-8674(85)80128-8
  18. D. W. Sumners, C. Ernst, N.R. Cozzarelli, and S.J. Spengler, Mathematical analysis of the mechanisms of DNA recombination using tangles, Quarterly Reviews of Biophysics, 28 (1995).
  19. Alexandre A. Vetcher, Alexander Y. Lushnikov, Junalyn Navarra-Madsen, Robert G, Scharein, Yuri L. Lyubchenko, Isabel K. Darcy, and Stephen D. Levene, DNA topology and geometry in Flp and Cre recombination, J. Mol. Biol., 357 (2006), 1089-1104. https://doi.org/10.1016/j.jmb.2006.01.037
  20. Alexander V. Vologodski http://www.biophysics.org/btol/supramol.html♯13 Online Biophysical Chemistry Textbook, ed. V. Bloomfield, 1999
  21. S.A. Wasserman and N.R. Cozzarelli, Determination of the stereostructure of the product of Tn3 resolvase by a general method, Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 1079-1083. https://doi.org/10.1073/pnas.82.4.1079
  22. S.A.Wasserman, J.M. Dungan, and N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science, 229 (1985), 171-174. https://doi.org/10.1126/science.2990045
  23. J. Watson and F. Crick, A structure for deoxyribose nucleic acid, Nature, 171, 737-738.

Cited by

  1. KNOTTED AND LINKED PRODUCTS OF RECOMBINATION ON T (2, n)#T (2, m) SUBSTRATES vol.51, pp.4, 2014, https://doi.org/10.4134/jkms.2014.51.4.817
  2. Topological tangle modeling of difference topology experiments: tangle analysis of DNA-protein complexes vol.622, pp.1, 2015, https://doi.org/10.1088/1742-6596/622/1/012023
  3. A SURVEY OF N-STRING TANGLE ANALYSES OF DNA-ENZYME SYNAPTIC COMPLEXES vol.35, pp.3, 2017, https://doi.org/10.14317/jami.2017.349
  4. AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL vol.25, pp.2, 2011, https://doi.org/10.7468/jksmeb.2018.25.2.95