References
- R.P. Agarwal, M. Benchohra and B.A. Slimani, Existence results for differential equations with fractional order impulses, Memoirs on Differential Equations and Mathematical Physics, 44(2008), 1-21. https://doi.org/10.1134/S0012266108010011
- R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, 2009(2009), Article ID 981728, 47 pages.
- R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., (2010), doi:10.1007/s10440-008-9356- 6.
- R.P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differential equations, Comp. Math. Appl., 59(2010), 1095-1100. https://doi.org/10.1016/j.camwa.2009.05.010
- B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(3)(2009), 251-258. https://doi.org/10.1016/j.nahs.2009.01.008
- B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comp. Math. Appl., 58(2009), 1838-1843. https://doi.org/10.1016/j.camwa.2009.07.091
- B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, 2009(2009), 11 pages. Article ID 708576.
- Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl., 311(2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
- K. Balachandran and J. P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., 115 (2002), 7-28. https://doi.org/10.1023/A:1019668728098
- K. Balachandran and J. H. Kim; Remarks on the paper "Controllability of second order differential inclusion in Banach spaces"[J. Math. Anal. Appl. 285,537-550 (2003)]. J. Math. Anal. Appl., 324 (2006), 746-749. https://doi.org/10.1016/j.jmaa.2005.11.070
- K. Balachandran and J.Y. Park, Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Analysis: Hybrid Systems, 3(4)(2009), 363-367. https://doi.org/10.1016/j.nahs.2009.01.014
- K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations, 2010(4)(2010), 1-12.
- K. Balachandran, S.Kiruthika and J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 16(4), 1970- 1977.
- M. Benchohra and B.A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electronic Journal of Differential Equations, 2009(10)(2009), 1-11.
- M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11(2008), 35-56.
- M. Benchohra, J. Henderson and S.K. Ntouyas, Existence results for impulsive multivalued semilinear neutral functional inclusions in Banach spaces, J. Math. Anal. Appl., 263(2001), 763-780. https://doi.org/10.1006/jmaa.2001.7663
- M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338(2008), 1340-1350. https://doi.org/10.1016/j.jmaa.2007.06.021
- M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Frechet spaces, Nonlinear Anal., 61 (2005), 405-423. https://doi.org/10.1016/j.na.2004.12.002
- B. Bonila, M. Rivero, L. Rodriquez-Germa and J.J. Trujilio, Fractional differential equations as alternative models to nonlinear differential equaitons, Appl. Math. Comput., 187(2007), 79-88. https://doi.org/10.1016/j.amc.2006.08.105
- L. Byszewski, Theorems about existence and uniqueness of solutions of solutions of a semi-linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505. https://doi.org/10.1016/0022-247X(91)90164-U
- L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1991), 11-19. https://doi.org/10.1080/00036819008839989
- Y. K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49(2009), 605-609. https://doi.org/10.1016/j.mcm.2008.03.014
- Y.-K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, 2(2008), 209-218. https://doi.org/10.1016/j.nahs.2007.10.001
- Y.K. Chang, J. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl., 142(2009), 267-273. https://doi.org/10.1007/s10957-009-9535-2
- Y. Q. Chen, H. S. Ahu and D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Processing, 86(2006), 2794-2802. https://doi.org/10.1016/j.sigpro.2006.02.021
- G.M. N'Guerekata, A Cauchy problem for some fractional abstract differential equations with non local conditions, Nonlinear Analysis, 70(5)(2009), 1873-1876. https://doi.org/10.1016/j.na.2008.02.087
- J.H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15(2)(1999), 86-90.
- E. Hernandez, Donal O'Regan and K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Analysis: Theory, Methods and Applications, 73(15)(2010), 3462-3471. https://doi.org/10.1016/j.na.2010.07.035
- E. Hernandez, A second order impulsive Cauchy problem, Int. J. Math. Math. Sci., 31(8)(2002), 451-461. https://doi.org/10.1155/S0161171202012735
- E. Hernandez and H.R. Henriquez, Impulsive partial neutral differential equations, Appl. Math. Lett., 19(2006), 215-222. https://doi.org/10.1016/j.aml.2005.04.005
- G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear Analysis: Real World Applications, 11 (2010), 535-546. https://doi.org/10.1016/j.nonrwa.2009.01.003
- A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Analysis, 70(2009), 2521-2529. https://doi.org/10.1016/j.na.2008.03.037
- V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, NJ, 1989.
- V. Lakshmikantham, Theory of fractional functional differential equation, Nonlinear Anal., 69(2008), 3337- 3343. https://doi.org/10.1016/j.na.2007.09.025
- V. Lakshmikantham and J. V. Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1(1)(2008), 38-45.
- V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69(2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iteration technique in fractional differential equations, Appl. Math. Lett., 21(2008), 828-834. https://doi.org/10.1016/j.aml.2007.09.006
- J.H. Liu, Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., 6(1)(1999), 77-85.
- Y. F. Luchko, M. Rivero, J. J. Trujillo and M. P. Velasco, Fractional models, nonlocality and complex systems, Comp. Math. Appl., 59(2010), 1048-1056. https://doi.org/10.1016/j.camwa.2009.05.018
- F. Mainardi, Fractional Calculus, Some Basic Problems in Continuum and Statistical Mechanics, in A. Carpinteri, F. Mainardi (Eds)., Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, 1997, 291-348.
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.
- G. M. Mophou and G. M. N'Guerekata, Existence of mild solution for some fractional differential equations with nonlocal condition, Semigroup Forum, 79(2009), 315-322. https://doi.org/10.1007/s00233-008-9117-x
- G. M. Mophou and G. M. N'Guerekata, On integral solutions of some nonlocal fractional differential equations with nondense domain, Nonlinear Analysis, 71(2009), 4668-4675. https://doi.org/10.1016/j.na.2009.03.029
- G. M. Mophou and G. M. N'Guerekata, Mild solutions for semilinear fractional differential equations, Electronic Journal of Differential Equations, Vol. 2009(2009), No. 21, pp. 1-9.
- G.M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations , Nonlinear Analysis, 72(2010), 1604-1615. https://doi.org/10.1016/j.na.2009.08.046
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- Y.V. Rogovchenko, Nonlinear impulsive evolution systems and applications to population models, J. Math. Anal. Appl., 207(2)(1997), 300-315. https://doi.org/10.1006/jmaa.1997.5245
- A. B. Shamardan and M. R. A. Moubarak, Controllability and observability for fractional control systems, Journal of Fractional Calculus, 15(1999), 25-34.
- Z. Tai and X. Wang, Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces, Applied Mathematics Letters, 22(11)(2009), 1760-1765. https://doi.org/10.1016/j.aml.2009.06.017
- J. Wang, W. Wei and Y. Yang, Fractional nonlocal integrodifferential equations and its optimal control in Banach spaces, J. KSIAM., 14:2(2010), 79-91.
- S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives , Nonlinear Anal., 71 (2009), 2087-2093. https://doi.org/10.1016/j.na.2009.01.043
- Y. Zhong, J. Feng and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256. https://doi.org/10.1016/j.na.2009.01.202