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ABSTRACT. An n-string tangle is a three dimensional ball with n strings properly embedded
in it. A tangle model of a DNA-protein complex is first introduced by C. Ernst and D. Sum-
ners in 1980’s. They assumed the protein bound DNA as strings and the protein as a three
dimensional ball. By using a tangle analysis, one can predict the topology of DNA within the
complex. S.Kim and I. Darcy developed the biologically reasonable 4-string tangle equations
and decided a solution tangle, called R-standard tangle. The author discussed more about the
simple solution tangles of the equations and found a generalized R-standard tangle solution.

1. INTRODUCTION

An n-string tangle T is a pair (B, t) where B is a three dimensional ball and t = {t1, · · · , tn}
is a set of n arcs embedded in B such that two end points of ti are on the boundary of B for
all i = 1, · · · , n. (See Figure 6 for examples of tangles.) The concept of a tangle is introduced
by John Conway [3] in the 1960’s while he tabulate knots. Especially the case n = 2 is well
studied by many mathematicians [7, 8, 9, 19, 12, 16, 17, 18]. In the 1980’s, this 2-string tangle
theory is used to model a DNA-Tn3 protein complex and a DNA-Phaseλ protein complex by
C. Ernst and D. Sumners, motivated by Nick Cozzarelli’s experiments [6, 17, 21, 22]. In this
model, the protein is represented by a three dimensional ball B3 and the DNA segments within
the protein are represented by arcs (See Figure 1). Ernst and Sumners predicted the topology
of DNA-segments within the Tn3/Phaseλ proteins [7, 8].

A tangle analysis with n = 3 or more is much more complicated than 2-string tangle analy-
sis. In 2007, I. Darcy, J. Luecke and M. Vazquez used a 3-string tangle analysis to figure out the
topology of DNA trapped by Mu-proteins. This work is motivated by S. Pathania, M. Jayaram
and R. Harshey’s difference topology experiment[14] (See Figure 5). This experiment is also
computationally analyzed in [4] by Darcy et al.
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T

FIGURE 1. DNA topology. Left figure is redrawn from AFM image of a Cre
synaptic complex with circular DNA [19]. Right figure is a tangle model cor-
responding to it.

Recently, in 2009, S. Kim and I. Darcy addressed a possibility that proteins bind to DNA at
4 sites [10, 11] and introduced a 4-string tangle model of DNA-protein complexes in this case.
Even though there is no experimental data for this 4-string tangle model, there are many biolog-
ical processes (especially DNA replication, recombination and transposition) involve multiple
proteins with multiple DNA segments. Kim and Darcy determined that a biologically rea-
sonable 4-string tangle model of DNA-protein complexes is an R-standard tangle (see section
3).

In this paper, I discussed more about the 4-string tangle solution of Kim and Darcy’s equa-
tions. Also, I discovered a property that a graph which corresponds to an R-standard tangle
is very similar to a 2-string rational tangle. By using a Conway notation of 2-string rational
tangle, I found a generalized R-standard solution tangle.

2. DNA TOPOLOGY AND DNA-PROTEIN COMPLEX

As well as Human, every organism contains its genetic information in DNA. The information
is encoded with 4 bases: A(adenine), G(guanine), C(cytosine) and T(thymine). In 1953, James
Watson and Francis Crick discovered the double helical structure of DNA [23]. The meaning
of ’double’ is that DNA consists of two strands connected to each other by hydrogen bonds.
One strand is made up of repeated bases (A, G, C and T) and the other strand also consists
of those 4 bases in the way that A=T (A pairs with T by two hydrogen bonds) and G≡C (G
pairs with C by three hydrogen bonds). ’Helical’ is from the fact that the two strands are coiled
around the helical axis once every 10.5 base pairs in right handed fashion. Simply speaking,
the shape of DNA is a twisted ladder (see Figure 2 (a)).

Because of this double helical structure, when twists are added or subtracted to a long DNA
molecule (this is a very common situation due to biological process such as replication, trans-
lation, recombination, etc), DNA tends to coil upon itself. Such coiling of DNA is the process
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FIGURE 2. (a) The structure of double helical DNA. Courtesy: National Hu-
man Genome Research Institute (b) A typical conformation of supercoiled
DNA. A double stranded DNA is assumed as a single string. Redrawn from
[20]

of supercoiling. It is usually negatively supercoiled in most organisms. See Figure 2 (b) for a
typical conformation of a supercoiled DNA.

DNA is in either linear or circular form. The typical form of bacterial DNA and cytoplasmic
DNA in animal is circular [20]. Thus studying properties of a circular DNA is very interesting
and important to understand biological activities of organism. To measure the supercoiling of
a circular DNA, one can use twist and writhe (see [1, 2, 20] for more detail). This is one way
to understand DNA topology. In this paper, I focus on a supercoiled circular DNA.

To be replicated, the helixes of DNA need to be unwound and the two strands should be
separated from each other. And then a synthesis of new DNA will be held. From the beginning
to the end of the DNA replication, lots of proteins(enzymes) act on DNA. Besides this activity,
to perform a variety of biological process, many proteins(enzymes) bind to DNA to help. There
are two kinds of DNA-binding proteins; one binds to non-specific DNA segments, and the other
binds to specific DNA segments. I will focus on the latter. Cre is a well known example of
a specific DNA-binding protein which binds at two specific DNA sites, loxP. It helps a DNA
recombination and the process is the following: Cre binds to two loxP sites, cut those two
sites and then rejoin them. This process can be modeled by Ernst and Sumners’ 2-string tangle
model as in Figure 3.

Mu proteins are bacteriophage which help transposition (a movement of DNA segment from
one place to another within a genome) efficiently. These proteins bind to DNA at 3 specific
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FIGURE 3. A 2-string tangle model of Cre reaction. Cre is modeled by a ball
and DNA is modeled by a string. Courtesy: I. Darcy

sites, L(attL), R(attR) and E(enhancer). When Mu proteins bind to all those three sites lying
on a circular DNA, we call the complex Mu-transpososome (See Figure 4 (a)). The struc-
ture of Mu-transpososome is very important to understand the transposition process. In 2002,
Pathania, Jayaram and Harshey studied the topology of DNA within the complex [14]. They
predicted that it has the five crossing conformation (Figure 4 (b)). This is under the assump-
tion that the DNA bound by Mu is supercoiled and branched. They used a difference topology
technique(see Figure 5) for the experiments and it’s well summarized in [14, 5, 10, 11].

−binding
Mu

E

L R

Enhancer

attRattL

C C

(a) (b)
C

1 2

3

FIGURE 4. (a) Construction of Mu-transpososome. (b) 5-crossing conforma-
tion of DNA within the Mu. Figure from [11]

3. TANGLE ANALYSIS

An n-string tangle is a pair (B, t), where B is a 3 dimensional ball and t is a set of arcs
embedded in B. The two end points of each arc lie on the boundary of B. Two tangles are
equivalent if they are ambient isotopic keeping the boundary of B fixed. Two tangles T1, T2 are
freely isotopic if there is an isotopy of the 3-ball taking T1 to T2, which is not necessarily fixed
on its boundary. If a tangle T = (B, t) is freely isotopic to a tangle with no crossing, then we
say T is a rational tangle. T is locally knotted if there is a 2-sphere S in B that intersect one of
the two strings transversely in two points and the string in S is knotted with end points on S.
In the case that T is neither rational nor locally knotted, T is called a prime tangle. Examples
of 3-string tangles are shown in Figure 6.
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FIGURE 5. Tangle model of the difference topology experiments of Mu-
transpososome. In this figure, the dotted circles represent Cre. (a) Cre binds to
the two loxP sites lying on the two outside loops of DNA; one is connecting E
and R, the other is connecting E and L. Before the Cre reaction, DNA confor-
mation is unknot, whereas after the Cre reaction, it is 3-noded knot(trefoil). (b)
Cre binds to the two loxP sites lying on the two outside loops of DNA; one is
connecting E and R, the other is connecting L and R. Before the Cre reaction,
DNA conformation is unknot, whereas after the Cre reaction, it is 3-noded
knot(trefoil). (c) Cre binds to the two loxP sites lying on the two outside loops
of DNA; one is connecting E and L, the other is connecting R and L. Before
the Cre reaction, DNA conformation is unknot, whereas after the Cre reaction,
it is 4-noded link. In this figure, I summarized the main experiments used to
determine DNA topology within the Mu. In [14], there are more experiments
up to the orientation of loxP sites. Thus, they did experiments with linear DNA
instead of the circular DNA (which include E, L and R ) to confirm their re-
sults.

Especially, 2-string tangle theory is well studied initiated by J. Conway[3]. A 2-string ratio-
nal tangle is defined as a tangle freely isotopic to a 2-string tangle with no crossing, the zero
tangle(see Figure 7(a)). Inversely, a rational tangle can be constructed by adding alternating
horizontal and vertical half twists to the zero tangle. From this fact, Conway developed a Con-
way notation of a 2-string rational tangle as (x1, · · · , xn) where xi’s are integers: Start with
the zero tangle and add horizontal x1 half twists by rotating NE and SE boundary points of
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(b) (c)   (a)

(d) (e)

FIGURE 6. Examples of 3-string tangles
(a) Zero tangle; (b) Locally knotted tangle; (c) and (d) Rational tangles; (e) Prime tangle.

strings, add x2 half vertical twists by rotating SW and SE boundary points of strings and etc.
The last integer xn must be a number of horizontal half twists and hence n should be an odd
number. For the sign, left handed horizontal twists and right handed vertical twists are positive.
See Figure 7(b) for an example.

 (a)

NE

SE

(b)

NE

SESW

NW NW

SW

FIGURE 7. Examples of 2-string tangles
(a) The zero tangle; (b) The 2-string tangle, (-2,-3,0) In this figure, NW, NE, SW and SE are

symbolic of the four endpoints of the strings.

By using the Conway notation (x1, ..., xn), we can construct the unique extended rational
number

a

b
∈ Q ∪∞ as the following:

a

b
= xn +

1

xn−1 +
1

xn−2+
1

. . . x2+
1
x1
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Conway proved that two equivalent 2-string rational tangles correspond to the same extended
rational number. The inverse is also true.

A 3-string tangle analysis is much more complicated than 2-string tangle theory. Since the
contour of Mu-transpososome is a ball of proteins with three outside DNA loops, it can be
modeled by a 3-string tangle as in Figure 4 (a). Darcy, Luecke and Vazquez analyzed the result
of difference topology experiments of Mu-transpososome by 3-string tangle theory. They con-
cluded that the 3-branched 5-crossing conformation is the only biologically reasonable model
of Mu-transpososome. This is without the 3-branched and supercoiled DNA assumption:

Proposition 3.1. [5] Let T be a 3-string tangle which satisfies the system of tangle equations
in Figure 8 (a). If T can be freely isotopic to a projection with less than 8 crossings, then T is
the tangle in the Figure 8 (b).

(a)

R

(b)

E

L3−noded knot

3−noded knot

4−noded catenane

T T

T T

T T

FIGURE 8. Tangle model of Mu transpososome. Figure from [11]

Note that Darcy et al also used the Pathania et al’s extra experimental result with linear DNA
to exclude eight crossing solutions.

Kim and Darcy proposed the potential that proteins bind to DNA at four sites. The experi-
mental data is not discovered yet but it’s very practical proposal. In this case, a DNA-protein
complex can be modeled by 4-string tangle and the most biologically relevant model is in
Figure 9.

Motivated from this model, they defined a standard tangle and a standard graph:
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FIGURE 9. The most biologically relevant 4-string tangle model of a DNA-
protein complex

Definition 3.1. [10] A tangle of the form shown in Figure 10 (a) will be called standard, where
ni is the number of left-handed half twists. Note that a 4-string standard tangle T can be
represented by a weighted graph Gs, where Gs is as in Figure 10(b). Call this graph Gs a
standard graph.

Where

       (a) (b)

n i

i

=

if n > 0

if n < 0i

n2

n1
n4

n5

n3

n1

n2 n5

n4

n3

FIGURE 10. A standard tangle and a standard graph
(a) Standard tangle; (b) A weighted graph Gs representing a 4-string standard tangle. Figure

from [10]

From the possibility that a pair of supercoiled DNA branches is twisted, they defined an
R-standard tangle:

Definition 3.2. [10] A weighted graph GR is an R-standard graph if it is isotopic to a standard
graph Gs allowing the boundary of Gs to move(Figure 11). A tangle T is R-standard if it
corresponds to an R-standard graph GR.

Kim and Darcy set up a system of tangle equations based on difference topology, see Figure
12 . Define a solution tangle as a 4-string tangle satisfies all tangle equations in Figure 12 where
the products are (2, pi) links. From both biological and mathematical reason, they restricted
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FIGURE 11. A weighted R-standard graph GR and the corresponding tangle.
Figure from[11]

the condition of the product topology of DNA. See [11] for more details. And they concluded
that a biologically reasonable solution tangle is an R-standard tangle:

Theorem 3.2. [11] Suppose T is 4-string tangle which has less than 8 crossings up to free
isotopy. If T is a solution tangle, then T is R-standard.

4. BRANCHED SUPERCOILED DNA SOLUTIONS

In this section, we discuss more about the branched supercoiled DNA solutions. We start
with the following definition:

Definition 4.1. Let GR be a graph which corresponds to an R-standard tangle. There are
two vertices in the interior of the ball and 4 vertices on the boundary of the ball. Let v1 =
SW, v2 = NW, v3 = NE, v4 = SE be the vertices on the boundary of the ball, and v5 and
v6 be the vertices in the interior of the ball. GR is (2, j)-branched if v5 connects v2 = NW
and vj for some 1 6 j 6 4, j ̸= 2.

The vertex v5 can only be connected with (v1, v2) or (v2, v3) or (v2, v4); therefore, there are
only 3 different (i, j) branching as in Figure 13. For the case n5 = 0, GR is (i, j)-branched for
all (i, j) and the inverse is also true. Since each edge of GR represents a branch of a supercoiled
DNA, an (i, j)-branched graph and a (k, l)-branched graph represent different topologies of a
DNA molecule when n5 ̸= 0 and (i, j) ̸= (k, l).

We can think about the simplest example of each branching as in Figure 14 which are the
most biologically relevant 4-string tangle models of DNA-protein complexes. Assume the
tangle in Figure 14 (a) is a solution of equation in Figure 12. Then we have the equations in
Table 1 (a) I. In this equations, the p1, · · · , p6 values must be determined experimentally, and
we solved the equations for n1, · · · , n6 as in Table 1 (a) II. For the tangles in Figure 14 (b) and
(c), similar calculations are done as in Table 1 (b) and (c). For more information about these
simple solution tangles, see [11].

The concept of R-standard tangle was developed because of the possibility that a pair of
supercoiled DNA branches can be twisted. An R-standard tangle T corresponds to a weighted
graph GR as in Figure 11. This implies that twisting a pair of branches of T corresponds to
twisting a pair of edges (excluding the one connecting v5 and v6)of GR along the boundary of
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(a) 

(b)

(c)

(d)

(e)

(f)

p  crossings
3

...

...

...

...

...

...

p  crossings
1

p  crossings
4

5
p  crossings

p  crossings
6

=

=

2
p  crossings

=

=

=

=

=

=

=

=

=

=

T

T

T

T

T

T

T

T

T

T

T

T

FIGURE 12. A system of tangle equations based on difference topology. In
this figure, the tangle T represents a protein which binds to DNA at 4 sites.
The dotted circle represents Cre. Before the Cre recombination, the topology
of DNA is unknot, whereas after the reaction, it is (2, pi) links. In (b)∼(f), T
is rotated. Figure from [11]

the 3-ball. This action of adding twists to GR is exactly the same as the action of constructing
a rational 2-string tangle (See section 3) except for the fact that a tangle starts from a zero
tangle versus a graph starts from a standard graph (see Definition 3.1). Hence we can get an
R-standard graph by adding alternating horizontal and vertical twists to a standard graph, and
thus an R-standard graph can be denoted by Conway notation.

Let [a1, b1, ..., an−1, bn−1, an] be a Conway notation for GR, where ai is the number of
horizontal right-handed half twists and bi is the number of vertical left-handed half twists. The
a
′
is and b

′
is are integers. In other words, we start with a standard graph, add a1 horizontal

half twists by moving vertices at NE and SE along the boundary of 3-ball, add vertical b1 half
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FIGURE 13. (i, j)-branched weighted graphs for R-standard tangle
(a)(1,2)-branched; (b)(2,3)-branched; (c)(2,4)-branched weighted graph for R-standard tangle

(Note that the edge connecting v4, v5 can pass either over or under the edge connecting v1,
v6.)

n 1

n2
n 3

n 5

n 4

n2 n 3

n 4n 1

n 5

(a) (b) (c)

c 1

c 2
c 3

c 4

n 2

n 1
n 4

n 5

n 3

c 1

c 2 c 3

c 4

c 1

c 2
c 3

c 4

FIGURE 14. Examples of R-standard tangle model of a branched DNA-
protein complex corresponding to a weighted graph

(a) (1,2)-branched; (b) (2,3)-branched; (c) (2,4)-branched (Similar to Figure 13 (c), there are
two cases at the crossing of two branches depending on which branch is over than another.)

twists by moving vertices at SW and SE along the boundary of 3-ball, and add a2 horizontal
half twists, etc. Similar to rational 2-string tangles, a unique rational number (∈ Q ∪ ∞) is
decided by a continued fraction and two R-standard graphs are the same (i.e. ambient isotopic)
if the two rational numbers from each graph are the same. See Figure 15 for an example.

An interesting property of the continued fraction is that the numbers corresponding to a
Conway notation can always be even numbers. Without loss of generality, let A

B be a reduced
(A,B are relatively prime) rational number which corresponds to GR with B = A · q+ r (0 <
r < A). We can assume A < B since if A > B, then A

B = q0 ± C
D where C < D and q0 is

even which is an entry of Conway notation. Then A
B = 1

B
A

= 1
A·q+r

A

= 1
q+ r

A
. If q is an even

number, it will be an entry of the Conway notation for GR. If q is an odd number, then q + 1
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TABLE 1. Equations and solutions related to the three simple branched super-
coiled solution tangle

Equations Solution
n1 + n2 = p1 n1 =

p1+p4−p6
2

n2 + n3 + n5 = p2 n2 =
p1−p4+p6

2
(a) I. n3 + n4 = p3 II. n3 =

p2+p3−p6
2

n1 + n4 + n5 = p4 n4 =
−p2+p3+p6

2
n1 + n3 + n5 = p5 n5 =

−p1+p2−p3+p4
2

n2 + n4 + n5 = p6 p2 + p4 = p5 + p6
n1 + n2 + n5 = p1 n1 =

−p3+p4+p5
2

n2 + n3 = p2 n2 =
p3+p4−p5

2
(b) I. n3 + n4 + n5 = p3 II. n3 =

−p1+p2+p5
2

n1 + n4 = p4 n4 =
p3+p4−p5

2
n1 + n3 + n5 = p5 n5 =

p1−p2+p3−p4
2

n2 + n4 + n5 = p6 p1 + p3 = p5 + p6
n1 + n2 = p1 n1 =

p1−p2+p5
2

n2 + n3 + n5 = p2 n2 =
p1−p4+p6±2

2
(c) I. n3 + n4 = p3 II. n3 =

−p1+p2+p5
2

n1 + n4 + n5 ± 2 = p4 n4 =
−p1+p4+p6±2

2

n1 + n3 = p5 n5 =
p2+p4−p5−p6±2

2
n2 + n4 = p6 p1 + p3 = p2 + p4 ± 2

(a) (b)

FIGURE 15. Two ambient isotopic R-standard graphs
(a)[-3,-2,-1]↔ −10

7 = −1 + 1
−2+ 1

−3

; (b)[-4,2,-2]↔ −10
7 = −2 + 1

2+ 1
−4

will be an entry of the Conway notation for GR since A
B = 1

B
A

= 1
A·(q+1)+(r−A)

A

= 1
(q+1)+ r−A

A

.

In this manner, we can always obtain a Conway notation for an R-standard graph with all even
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entries. See Equation 4.1 for an example:

12

65
=

1
65
12

=
1

12·6+(5−12)
12

=
1

6 + −7
12

=
1

6 + 1
7·2+(5−7)

−7

=
1

6 + 1
−2+ 2

7

=
1

6 + 1
−2+ 1

4+ 1
−2

(4.1)

Kim and Darcy proved that a solution tangle (with less than 8 crossings up to free iso-
topy) of the equations in Figure 12 is an R-standard tangle. Let T be a solution tangle and
GR be the weighted R-standard graph which corresponds to T . Then GR has a Conway
notation [a1, b1, ..., an−1, bn−1, an] with all even integral entries (see Figure 16 (a)). Hence
GR can be obtained by adding alternating full horizontal twists and full vertical twists to a
weighted standard graph. Since we add full twists to a weighted graph, the vertices are still
v1 = SW, v2 = NW, v3 = NE, v4 = SE. This is a very important clue to find a solution
tangle.

b1

v2

v1
v4

v3

v1

v2 v3

v4
v2

v1 v4

v3

n4n1

n2 n3
n5

n2 n5
n3

n4n1

n2 n5
n3

n1 n4 e2

e1
e4

e3

(a)

...

...

...
a 1

(b)

FIGURE 16. GR

(a) GR; (b) GR with a Conway notation [-4,2,-2] and a different view of it

Let p1, ..., p6 be the numbers from the tangle equations in Figure 12. In other words, pi
is the number of half twists on the link from Cre recombination on two outside loops of a
solution tangle T which corresponds to GR in Figure 16 (a). For the standard tangle, pi values
are related to the n

′
is as in Table 1(a). Since we didn’t move v2 at all when adding twists to a

standard graph, the equation involving the p1, p2, p5, p6 are the same as in Table 1 (a), and only
p3, p4 are changed. This change can be easily seen in the different view of GR in Figure 16 (b).
Let ei be the edge of GR with weight ni. Then e2 has no crossings with any other edge. e1 and
e3 may have crossings with only e3 because the number of added twists are all even numbers.
For example, in the graph of Figure 16 (b), if we walk along the edge e3 from v3, we cross
only e4. Same is true for e1. This implies that we get (a1 + · · · + an)(sum of the numbers of
all horizontal half twists added to a standard tangle) many crossings when we connect v3 and
v4 by using an arc. Hence the link obtained from Cre recombination on c3 and c4 of a solution
tangle T has (a1+ · · ·+an) writhe which can be converted to 2 · (a1+ · · ·+an) half twists [2].
I.e., p3 = n3 + n4 + 2 · (a1 + · · ·+ an). Similarly, the link obtained from Cre recombination
on c1 and c4 of T has (b1 + · · ·+ bn−1) writhe which can be converted to 2 · (b1 + · · ·+ bn−1)
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half twists. Hence p4 = n1 + n4 + n5 +2 · (b1 + · · ·+ bn−1). We can summarize all pi values
of a solution tangle T in Equation 4.2.

n1 + n2 = p1

n2 + n3 + n5 = p2

n3 + n4 + 2 · (a1 + · · ·+ an) = p3 (4.2)
n1 + n4 + n5 + 2 · (b1 + · · ·+ bn−1) = p4

n1 + n3 + n5 = p5

n2 + n4 + n5 = p6.

We can solve the system of equations in Equation 4.2, and the solution is the following:

n1 =
p1 + p4 − p6

2

n2 =
p1 − p4 + p6 + 2 · (b1 + · · ·+ bn−1)

2

n3 =
p2 + p3 − p6 − 2 · (a1 + · · ·+ an)

2

n4 =
−p2 + p3 + p6 − 2 · (a1 + · · ·+ an)

2
(4.3)

n5 =
−p1 + p2 − p3 + p4 + 2 · (a1 + · · ·+ an)− 2 · (b1 + · · ·+ bn−1)

2
p2 + p4 − 2 · (b1 + · · ·+ bn−1) = p5 + p6.

We can do the similar work for equations in Table 1 (b) and (c). Hence we found a general-
ized branched supercoiled DNA tangle solution (i.e., R-standard tangle solution) of equations
in Figure 12.
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