References
- K. M. ARTHURS, L. C. MOORE, C. S. PESKIN, AND ET AL., MODELING ARTERIOLAR FLOW AND MASS TRANSPORT USING THE IMMERSED BOUNDARY METHOD, J. Comput. Phys., 147 (1998), pp. 402-440. https://doi.org/10.1006/jcph.1998.6097
- C. BEATTIE, A. D. GUERCI, T. HALL, A. M. BORKON, W. BAUMGARTNER, R. S. STUART, J. PETERS, H. HALPERIN, AND J. L. ROBOTHAM, Mechanisms of blood flow during pneumatic vest cardiopulmonary resuscitation, J. Appl. Physiol., 70 (1991), pp. 454-465. https://doi.org/10.1152/jappl.1991.70.1.454
- R. P. BEYER, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98 (1992), pp. 145-162. https://doi.org/10.1016/0021-9991(92)90180-7
- D. C. BOTTINO, Modeling Viscoelastic Networks and Cell Deformation in the Context of the Immersed Boundary Method, J. Comput. Phys., 147 (1998), pp. 86-113. https://doi.org/10.1006/jcph.1998.6074
- R. CORTEZ AND M. MINION, The Blob Projection Method for Immersed Boundary Problems, J. Comput. Phys., 161 (2000), pp. 428-453. https://doi.org/10.1006/jcph.2000.6502
- J. M. CRILEY, J. T. NIEMANN, J. P. ROSBOROUGH, S. UNG, AND J. SUZUKI, The heart is a conduit in CPR, Crit. Care Med., 9 (1981), pp. 373. https://doi.org/10.1097/00003246-198105000-00010
- R. DILLON, L. J. FAUCI, AND D. GAVER III, A microscale model of bacterial swimming, chemotaxis and substrate transport, Journal of Theoretical Biology, 177 (1995), pp. 325-340. https://doi.org/10.1006/jtbi.1995.0251
- R. DILLON, L. J. FAUCI, A. L. FOGELSON, AND D. GAVER III, Modeling biofilm processes using the immersed boundary method, J. Comput. Phys., 129 (1) (1996), pp. 57-73. https://doi.org/10.1006/jcph.1996.0233
- L. J. FAUCI AND C. S. PESKIN, A computational model of aquatic animal locomotion, J. Comput. Phys., 77 (1988), pp. 85-108. https://doi.org/10.1016/0021-9991(88)90158-1
- L. J. FAUCI, Peristaltic pumping of solid particles, Computers and Fluids, 21 (1992), pp. 583-598. https://doi.org/10.1016/0045-7930(92)90008-J
- L J. FAUCI AND A. L. FOGELSON, Truncated Newton methods and the modeling of complex immersed elastic structures, Communications on Pure and Applied Mathematics, 46 (1993), pp. 787-818. https://doi.org/10.1002/cpa.3160460602
- L J. FAUCI AND A. MCDONALD, Sperm motility in the presence of boundaries, Bulletin of Mathematical Biology, 57 (5) (1995), pp. 679-699. https://doi.org/10.1007/BF02461846
- A. L. FOGELSON, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111-134. https://doi.org/10.1016/0021-9991(84)90086-X
- A. L. FOGELSON AND C. S. PESKIN, A fast numerical method for solving the three-dimensional Stoke's equations in the presence of suspended particles, J. Comput. Phys., 79 (1988), pp. 50-69. https://doi.org/10.1016/0021-9991(88)90003-4
- J. GUNTZIG, S. NOLTE, P. SCHAD, AND R. PFANKUCHEN, Die Lymphdrainage von Cornea, Limbus und Conjunctiva Klin, MbL Augenheilkunde, 190 (1987), pp. 491-495. https://doi.org/10.1055/s-2008-1050441
- H. R. HALPERIN, J. E. TSITLIK, R. BEYAR, N. CHANDRA, AND A. D. GUERCI, Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model, Ann. Biomed. Eng., 15 (1987), pp. 385-403. https://doi.org/10.1007/BF02584292
- W. HARVEY, Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus, Frankford, (1987), Caput 14.
- E. JUNG, 2-D simulations of valvelelss pumping using the Immersed Boundary Method, Ph.D. Thesis, Courant Institute of Mathematical Sciences in New York University, 1999.
- E. JUNG AND C. S. PESKIN, Two-Dimensional Simulations of Valvelelss Pumping Using the Immersed Boundary Method, SIAM J. Sci. Comput., 23, 1 (2001), pp. 19-45. https://doi.org/10.1137/S1064827500366094
- P. J. KILNER, Formed flow, fluid oscillation and the heart as a morphodynamic pump (abstract), European surgical research, 19, suppl 1 (1987), pp. 89-90.
- M. C. LAI AND C. S. PESKIN, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, 160 (2) (2000), pp. 705-719. https://doi.org/10.1006/jcph.2000.6483
- R. J. LEVEQUE AND Z. LI, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp.1019-1044. https://doi.org/10.1137/0731054
- G. LIEBAU, Die Bedeutung der Tragheitskrafte fur die Dynamik des Blutkreislaufs, Zs Kreislaufforschung, 46 (1957), pp. 428-438.
- G. LIEBAU, Aus welchem bleibt die Blutforderung durch das Herz bei valvularem Versagen erhalten?, Z. f. Kreislaufforschg., 45 (1956), pp. 481-488.
- G. LIEBAU, Die Stromungsprinzipien des Herzens, Zs Kreislaufforschung, 44 (1955), pp. 677-684.
- G. LIEBAU, Uber ein Ventilloses Pumpprinzip, Naturwissenschsften, 41 (1954), pp. 327-328.
- D. M. MCQUEEN, C. S. PESKIN, AND E. L. YELLIN, Fluid dynamics of the mitral valve: physiological aspects of a mathematical model, Am. J. of physiol., 242 (1982), pp. H1095-H1110.
- D. M. MCQUEEN AND C. S. PESKIN, Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart, Journal of Supercomputing, 11 (3) (1997), pp. 213-236. https://doi.org/10.1023/A:1007951707260
- S. MIYAZAKI, T. KAWAI, AND M. ARARAGI, A piezo-electric pump driven by a flexural progressive wave, IEEE Transactions, pp. 283-288, 1991.
- K. L. MOORE, Embryologie, Schattauer Stuttgart, 2nd ed (1985), pp. 340-358.
- M. MOSER, J. W.HUANG, G. S. SCHWARZ, T. KENNER, AND A. NOORDERGRAAF, Impedance defined flow, generalisation of William Harvey's concept of the circulation - 370 years later, International Journal of Cardiovascular Medicine and Science, Vol 1, Nos 3/4 (1998), pp. 205-211.
- C. S. PESKIN, Flow patterns around heart valves: A digital computer method for solving the equations of motion, Ph.D. Thesis, Albert Einstein College of Medicine, 1972.
- C. S. PESKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220-252. https://doi.org/10.1016/0021-9991(77)90100-0
- C. S. PESKIN ET AL., Three dimensional fluid dynamics in a two-dimensional amount of central memory. Wave Motion: Theory, Modeling and Computation, 1 (1987), pp. 85-146.
- C. S. PESKIN AND D. M. MCQUEEN, A three-dimensional computational method for blood flow in the heart: Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (1989), pp. 372-405. https://doi.org/10.1016/0021-9991(89)90213-1
- C. S. PESKIN AND D. M. MCQUEEN, A general method for the computer simulation of biological systems interacting with fluids, Symposia of the Society for Experimental Biology, 49 (1995), pp. 265-276.
- C. S. PESKIN AND D. M. MCQUEEN, Fluid dynamics of the heart and its valves, Case studies in mathematical modeling - Ecology, Physiology, and Cell Biology, pp. 309-337, 1996.
- C. S. PESKIN AND B. F. PRINTZ, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys., 105 (1993), pp. 33-46. https://doi.org/10.1006/jcph.1993.1051
- A. M. ROMA, C. S. PESKIN, AND M. J. BERGER, An adaptive version of the Immersed Boundary Method, J. Comput. Phys., 153 (1999), pp. 509-534. https://doi.org/10.1006/jcph.1999.6293
- M. E. ROSAR, A three dimensional model for fluid flow through a collapsible tube, PhD thesis, New York University, 1994.
- D. J. RANDALL AND P. S. DAVIE, The Hearts and Heart-like Organs, Academic Press, London, 1 (1980), pp. 51-53.
- H. THOMANN, A Simple Pumping Mechanism in a Valveless Tube, Journal of Applied Math. and Phys., 29 (1978), pp. 169-177. https://doi.org/10.1007/BF01601511
- J. A. WERNER, M.D., H. L. GREENE, M.D., C. L. JANKO, AND L. A. COBB, M.D., Visualization of cardiac valve motion in man during external chest compression using two-dimensional echocardiography.: implications regarding the mechanism of blood flow, Circulation, 63 (1981), pp. 1417-1421. https://doi.org/10.1161/01.CIR.63.6.1417