DOI QR코드

DOI QR Code

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells

p-Coumaric acid에 의해 유도되는 인체 Jurkat T 세포의 에폽토시스 기전

  • Lee, Je-Won (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Young-Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • 이제원 (경북대학교 자연과학대학 생명과학부) ;
  • 김영호 (경북대학교 자연과학대학 생명과학부)
  • Received : 2011.11.11
  • Accepted : 2011.12.09
  • Published : 2011.12.31

Abstract

The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.

다양한 식용식물에 함유되어 있는 것으로 알려진 phenolic acids의 일종인 p-coumaric acid의 항암활성을 규명하고자, 인체 급성백혈병 T 세포주인 Jurkat T 세포에 대한 p-coumaric acid의 에폽토시스 유도기전을 조사하였다. Jurkat T 세포를 p-coumaric acid (50-$150{\mu}M$)로 처리한 결과, 세포독성, 에폽토시스-관련 DNA fragmentation, 및 pro-apoptotic multidomain Bcl-2 family member인 Bak의 활성화, ${\Delta}{\psi}m$ loss, caspase-9, -3, -7, 및 -8의 활성화, 그리고 PARP 분해 등의 여러 에폽토시스-관련 생화학적 현상들이 농도의존적으로 나타났다. 그러나 이러한 에폽토시스-관련 생화학적 현상들은 Jurkat T 세포에 anti-apoptotic Bcl-2 단백질을 과발현할 경우에는 나타나지 않았다. 또한 p-coumaric acid처리에 의해 유도되는 Jurkat T 세포의 에폽토시스에는 necrosis가 수반되지 않는 것으로 확인되었다. Jurkat T 세포를 pan-caspase inhibitor인 z-VAD-fmk를 전처리할 경우, p-coumaric acid 처리에 의해 유도되는 apoptotic sub-$G_1$ peak는 차단되어 나타나지 않았으나 ${\Delta}{\psi}m$ loss는 여전히 나타났는데, 이는 p-coumaric acid처리에 의한 에폽토시스의 유도에 caspase cascade 활성화가 필수적이며 ${\Delta}{\psi}m$ loss의 downstream 현상임을 나타낸다. 한편, FADD 및 caspase-8을 함께 발현하는 Jurkat T 세포주 A3, FADD-결손 Jurkat T 세포주 I2.1, 그리고 caspase-8-결손 Jurkat T 세포주 I9.2의 p-coumaric acid의 세포독성에 대한 감수성은 서로 유사하게 나타났는데, 이는 p-coumaric acid처리에 의한 에폽토시스의 유도가 Fas와 FasL간의 상호작용에 의해 개시되지 않음을 시사한다. p-Coumaric acid의 세포독성은 Jurkat T 세포에 비해 인체 정상 말초혈액 T 세포에서 훨씬 낮게 나타났다. 이러한 결과들은 p-coumaric acid 처리에 의해 유도되는 Jurkat T 세포의 에폽토시스가 Bak 활성화, ${\Delta}{\psi}m$ loss, caspase-9, -3, -7, 및 -8로 이루어진 caspase cascade의 활성화, 그리고 PARP 분해에 의해 유도되며, 또한 anti-apoptotic 단백질인 Bcl-2의 과발현에 의해서 음성적으로 조절됨을 나타낸다.

Keywords

References

  1. Adams, J. M. and S. Cory. 2007. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488-496. https://doi.org/10.1016/j.coi.2007.05.004
  2. An, S. M., S. I. Lee, S. W. Choi, S. W. Moon, and Y. C. Boo. 2008. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 159, 292-299. https://doi.org/10.1111/j.1365-2133.2008.08653.x
  3. Chan, R. I., R. H. San, and H. F. Stich. 1986. Mechanism of inhibition of N-methyl-N'-nitrosoguanidine-induced mutagenesis by phenolic compounds. Cancer Lett. 31, 27-34. https://doi.org/10.1016/0304-3835(86)90163-1
  4. Chen, J. H., Y. Shao, M. T. Huang, C. K. Chin, and C. T. Ho. 1996. Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett. 108, 211-214. https://doi.org/10.1016/S0304-3835(96)04425-4
  5. Chipuk, J. E. and D. R. Green. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164. https://doi.org/10.1016/j.tcb.2008.01.007
  6. Chipuk, J. E., L. Bouchier-Hayes, and D. R. Green. 2006. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396-1402. https://doi.org/10.1038/sj.cdd.4401963
  7. Chipuk, J. E., T. Moldoveanu, F. Llambi, M. J. Parsons, and D. R. Green. 2010. The BCL-2 family reunion. Mol. Cell 37, 299-310. https://doi.org/10.1016/j.molcel.2010.01.025
  8. Czabotar, P. E., P. M. Colman, and D. C. Huang. 2009. Bax activation by Bim? Cell Death Differ. 16, 1187-1191. https://doi.org/10.1038/cdd.2009.83
  9. Ferguson, L. R., S. T. Zhu, and P. J. Harris. 2005. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 49, 585-693. https://doi.org/10.1002/mnfr.200500014
  10. Friesen, C., I. Herr, P. H. Krammer, and K. M. Debatin. 1996. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat. Med. 2, 574-578. https://doi.org/10.1038/nm0596-574
  11. Gross, A., J. M. McDonnell, and S. J. Korsmeyer. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911. https://doi.org/10.1101/gad.13.15.1899
  12. Hacker, G. 2000. The morphology of apoptosis. Cell Tissue Res. 301, 5-17. https://doi.org/10.1007/s004410000193
  13. Hannun, Y. A. 1997. Apoptosis and the Dilemma of cancer chemotherapy. Blood 89, 1845-1853.
  14. Herrmann, K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Cri. Rev. Food Sci. Nutr. 28, 315-347. https://doi.org/10.1080/10408398909527504
  15. Huang, M. T., R. C. Smart, C. Q. Wong, and A. H. Conney. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946.
  16. Hudson, E. A., P. A. Dinh, T. Kokubun, M. S. Simmonds, and A. Gescher. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 9, 1163-1170.
  17. Johnstone, R. W, A. A. Ruefli, and S. W. Lowe. 2002. Apoptosis: A link between cancer genetics and chemotherapy. Cell 108, 153-164. https://doi.org/10.1016/S0092-8674(02)00625-6
  18. Jun, D. Y., H. S. Park, J. S. Kim, J. S. Kim, W. Park, B. H. Song, H. S. Kim, D. Taub, and Y. H. Kim. 2008. $17\alpha$-Estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol. Appl. Pharmacol. 231, 401-412. https://doi.org/10.1016/j.taap.2008.05.023
  19. Jun, D. Y, J. S. Kim, H. S. Park, C. R. Han, Z. Fang, M. H. Woo, I. K. Rhee, and Y. H. Kim. 2007. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria- dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313. https://doi.org/10.1093/carcin/bgm028
  20. Juo, P., S. Woo, C. J. Kuo, P. Signorelli, H. P. Biemann, Y. A. Hannun, and J. Blenis. 1999. FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 10, 797-804.
  21. Kim, Y. H., J. J. Proust, M. J. Buchholz, F. J. Chrest, and A. A. Nordin. 1992. Expression of the murine homologue of the cell cycle control protein $p34^{cdc2}$ in T lymphocytes. J. Immunol. 149, 17-23.
  22. Kluck, R. M., E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  23. Kroemer, G., and J. C. Reed. 2000. Mitochondrial control of cell death. Nat. Med. 6, 513-519. https://doi.org/10.1038/74994
  24. Kroemer, G., L. Galluzzi, and C. Brenner. 2007. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
  25. Laranjinha, J, O. Vierira, L. Almeida, and V. Madeira. 1996. Inhibition of metmyoglobin/$H_{2}O_{2}$- dependent low density lipoprotein lipid peroxidation by naturally occurring phenolic acids. Biochem. Pharmacol. 51, 395-402. https://doi.org/10.1016/0006-2952(95)02171-X
  26. Li, H., H. Zhu, C. Xu, and J. Yuan. 1998. Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  27. Li, P., D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  28. Lowe, S. W. and A. W. Lin. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495. https://doi.org/10.1093/carcin/21.3.485
  29. Mathew, S. and T. E. Abraham. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Cri. Rev. Biotechnol. 24, 59-83. https://doi.org/10.1080/07388550490491467
  30. Muller, M., S. Strand, H. Hug, E. M. Heinemann, H. Walczak, W. J. Hofmann, W. Stremmel, P. H. Krammer, and P. R. Galle. 1997. Drug-induced apoptotsis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403-413. https://doi.org/10.1172/JCI119174
  31. Nagarkatti, N. and B. A. Davis. 2003. Tamoxifen induces apoptosis in $Fas^{+}$ tumor cells by upregulating the expression of Fas ligand. Cancer Chemother. Pharmacol. 51, 284-290.
  32. Nardini, M., M. D'Aquino, G. Tomassi, V. Gentili, M. Di Felice, and C. Scaccini. 1995. Inhibition of human low-density- lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med. 19, 541-552. https://doi.org/10.1016/0891-5849(95)00052-Y
  33. Nystrom, L., M. Makinen, A. M. Lampi, and V. Piironen. 2005. Antioxidant activity of steryl ferulate extracts from rye and wheat bran. J. Agric. Food Chem. 53, 2503-2510. https://doi.org/10.1021/jf048051t
  34. Park, H. S., D. Y. Jun, C. R. Han, H. J. Woo, and Y. H. Kim. 2011. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase $p56^{lck}$ in human Jurkat T cells. Biochem. Pharmacol. 82, 1110-1125. https://doi.org/10.1016/j.bcp.2011.07.085
  35. Park, S. K. and J. C. Park. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Kor. J. Biotechnol. Bioeng. 5, 506-511.
  36. Saleh, A., S. M. Srinivasula, S. Acharya, R. Fishel, and E. S. Alnemri. 1999. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941-17945. https://doi.org/10.1074/jbc.274.25.17941
  37. Slee, E. A., H. Zhu, S. C. Chow, M. MacFarlane, D. W. Nicholson, and G. M. Cohen. 1996. Benzyloxycarbonyl- Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk) inhibits apoptosis by blocking the processing CPP32. Biochem. J. 315, 21-24.
  38. Tada-Oikawa, S., S. Oikawa, and S. Kawanishi. 1998. Role of ultraviolet A-induced oxidative DNA damage in apoptosis via loss of mitochondrial membrane potential and caspase- 3 activation, Biochem. Biophys. Res. Commun. 247, 693-696. https://doi.org/10.1006/bbrc.1998.8869
  39. Tait, S. W. and D. R. Green. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621-632. https://doi.org/10.1038/nrm2952
  40. Waterhouse, N. J., J. C. Goldstein, O. von Ahsen, M. Schuler, D. D. Newmeyer, and D. R. Green. 2001. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153, 319-328. https://doi.org/10.1083/jcb.153.2.319
  41. Yang, J., X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones, and X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129
  42. Zamzami, N., P. Marchetti, M. Castedo, C. Zanin, J. L. Vayssiere, P. X. Petit, and G. Kroemer. 1995. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661-1672. https://doi.org/10.1084/jem.181.5.1661

Cited by

  1. Prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim reduces the association of Bcl-2 with Bak or Bim, provoking Bak activation and mitochondrial apoptosis in nocodazole-treated Jurkat T cells vol.19, pp.1, 2014, https://doi.org/10.1007/s10495-013-0928-1
  2. Sorghum Extract Enhances Caspase-dependent Apoptosis in Primary Prostate Cancer Cells and Immune Activity in Macrophages vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1431
  3. Induction of apoptosis by collinin from Zanthoxylum schinifolium is mediated via mitochondrial pathway in human Jurkat T cells vol.48, pp.5-6, 2013, https://doi.org/10.1016/j.procbio.2013.03.010
  4. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells vol.1833, pp.10, 2013, https://doi.org/10.1016/j.bbamcr.2013.05.016
  5. Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells vol.47, pp.12, 2012, https://doi.org/10.1016/j.procbio.2012.06.012
  6. Tumor-suppressor Protein p53 Sensitizes Human Colorectal Carcinoma HCT116 Cells to 17α-estradiol-induced Apoptosis via Augmentation of Bak/Bax Activation vol.23, pp.10, 2013, https://doi.org/10.5352/JLS.2013.23.10.1230