DOI QR코드

DOI QR Code

나노유체의 열확산율 측정을 위한 비정상열선법 센서모듈 실험

An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids

  • 이신표 (경기대학교 기계시스템공학과)
  • Lee, Shin-Pyo (Dept. of Mechanical System Engineering, Kyonggi Univ.)
  • 투고 : 2010.03.15
  • 심사 : 2010.11.03
  • 발행 : 2011.02.01

초록

본 논문은 나노유체의 열확산율을 측정하는 센서와 주변회로 그리고 데이터의 처리방법을 제시한 것이다. 기존 비정상열선법을 이용하면 이론상 유체의 열전도율과 열확산율을 동시에 측정할 수 있으나 열전도율과 비교하여 열확산율은 많은 오차가 발생한다. 본 연구에서 제시한 방법은 측정변수가 단순하고 복잡한 센서의 교정과정을 생략할 수 있는 실용적 측면의 장점이 있다. 먼저 열확산율이 잘 알려진 유체들에 대한 검증실험을 실시하였고 나노유체의 열확산율을 측정하여 기본유체와 비교하는 과정을 예시적으로 설명하였다. 본 연구는 기존 열전도율측정에 한정되어 왔던 나노유체 연구의 범위를 열확산율 또는 비열의 개념으로 확장하였다는 관점에서 중요성을 갖는다.

A technique for measuring the thermal diffusivity of nanofluids is proposed in this study. In theory, it has been well known that the transient hot-wire method can be used to measure the thermal conductivity and diffusivity of fluids simultaneously. However, when traditional methods were employed, the accuracy of the calculated thermal conductivity was considerably higher than that of diffusivity. The proposed method has two advantages for practical use: it only needs a simple data-conversion process for calculating the diffusivity, and it can skip the tedious calibration process involved in the case of a wire sensor. A validation experiment for the new system has been performed with the basic fluids, and the comparison experiment to compare the change in diffusivity of the base oil and the change in diffusivity of the nano oil has been carried out. It is expected that the present system will provide numerous methods for investigating the variation in the thermal properties other than thermal conductivity.

키워드

참고문헌

  1. Choi, U. S., 1995, "Enhancing Thermal Conductivity of Fluids with Nanoparticles," ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov., 12-17.
  2. Lee, S., Choi, U. S., Li, S., and Eastman, J. A., 1999, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” ASME Tran. J. Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  3. Kim, S. H., Choi, S., Hong, J. and Kim, D. S., 2005, "Measurement of the Thermal Conductivity of Alumina / Zinc-Oxide / Titanium-Oxide Nanofluids," Trans. of the KSME (B), Vol. 29, No. 9, pp. 1065-1073. https://doi.org/10.3795/KSME-B.2005.29.9.1065
  4. Jang, S. P. and Choi, U. S., 2004, "Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids," Applied Physics Letters, Vol. 84, Issue 21, pp. 4316-4318. https://doi.org/10.1063/1.1756684
  5. Lee, S. and Kang, K., 2007, "Validation Test for Transient Hot-wire Method to Evaluate the Temperature Dependence of Nanofluids," Trans. of the KSME (B), Vol. 31, No. 4, pp. 341-348. https://doi.org/10.3795/KSME-B.2007.31.4.341
  6. Johns, A. I., Scott, A. C., Watson, J. T. R. and Ferguson, D., 1988, "Measurement of the Thermal Conductivity of Gases by the Transient Hot-wire Method," Phil. Trans. R. Soc. Lond., Vol. A 325, pp. 295-356.
  7. Roder, H. M., 1981, "A Transient Hot-wire Thermal Conductivity Apparatus for Fluids," Journal of Research of the NBS, Vol. 86, No. 5, pp. 457-493.
  8. Perkins, R. A., Roder, H. M. and Nieto de Castro, C. A., 1991, "A High Temperature Transient Hot-wire Thermal Conductivity Apparatus for Fluids," Journal of Research of the NIST, Vol. 96, No. 3, pp. 247-269. https://doi.org/10.6028/jres.096.014
  9. Nagasaka, Y. and Nagashima, A., 1981, "Simultaneous Measurement of the Thermal Conductivity and the Thermal Diffusivity of Liquids by the Transient Hot-wire Method," Rev. Sci. Instrum., Vol. 52, No. 2, pp. 229-232. https://doi.org/10.1063/1.1136577
  10. Glatzmaier, G. C. and Ramirez, W. F., 1985, "Simultaneous Measurement of the Thermal Conductivity and Thermal Diffusivity of Unconsolidated Materials by the Transient Hot Wire Method," Rev. Sci. Instrum., Vol. 56, pp. 1394-1398. https://doi.org/10.1063/1.1138491
  11. Zhang, X. and Fujii, M., 2000, "Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-hot-wire Method," International Journal of Thermophysics, Vol. 21, No. 1, pp. 71-84. https://doi.org/10.1023/A:1006604820755
  12. Jwo, C. and Teng, T., 2005, "Experimental Study on Thermal Properties of Brines Containing Nanoparticles," Review of Advanced Material Science, Vol. 10, pp. 79-83.
  13. Zhang, X., Gu, H. and Fujii, M., 2006, "Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids containing Spherical and Cylindrical Nanoparticles," Journal of Applied Physics, Vol. 100, 044325. https://doi.org/10.1063/1.2259789
  14. Brunn, H. H., 1995, Hot-Wire Anemometry, Oxford University Press, pp. 219-231.
  15. Coughlin, R. F. and Driscoll F. F., 1991, Operational Amplifier and Linear Integrated Circuit, 4th Ed., Prentice-Hall International Ed., pp. 218-226.
  16. Incropera, F. P. and DeWitt, D. P., 2001, Introduction to Heat Transfer, 6th Ed., Wiley, pp. 116-118.
  17. Na, Y. S., Lee, J. S. and Kihm, K. D., 2009, "Effect of Convective Flow Condition on Effective Thermal Diffusivities of Water-based Alumina Nanofluids," Proceedings of the KSME fall Annual meeting, pp. 2984-2989.
  18. Lee, S., 2008, "Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids," Trans. of the KSME (B), Vol. 32, No. 2, pp. 117-124. https://doi.org/10.3795/KSME-B.2008.32.2.117
  19. Lee, W. H. and Park, S. I., 2010, "A Study on the High Temperature Thermal Conductivity Measurement of Nanofluid Using a Two-Phase Model," Trans. of the KSME (B), Vol. 34, No. 2, pp. 153-156. https://doi.org/10.3795/KSME-B.2010.34.2.153