DOI QR코드

DOI QR Code

Evaluation of Anti-Colitic Effect of Chung-Jang-Hwan (C-mix) in Mice

  • Received : 2010.08.06
  • Accepted : 2010.11.02
  • Published : 2011.01.31

Abstract

The inhibitory effect of Chung-Jang-Hwan (C-mix) consisted of Geranium nepalense subsp. thunbergii, Saururus chinensis, and Rubus coreanus were investigated in dextran sulfate sodium (DSS)-induced colitic mice by microarray analysis. Treatment with Cmix improved colitic symptoms, including colon shortening and myeloperoxidase activity. Treatment with DSS alone upregulated the expression levels of inflammation-related genes, including IL-$1\beta$, IL-6, CCL2, CCL4, CCL5, CCL7, CCL8, CCL24, CXCL1, CXCL2, CXCL5, CXCL9 and CXCL10, and other colitis-related genes such as COX-2, PAP, MMP family, S100a8, S100a9 and DEFA1 in mice. However, treatment with C-mix inhibited the expression levels of inflammation-associated genes induced by DSS. The increased expression levels of COX-2 and IL-$1\beta$, representative inflammatory genes, were confirmed by a quantitative realtime polymerase chain reaction analysis. These results indicate that C-mix may ameliorate colitis by the inhibitory regulation of inflammation-associated genes.

Keywords

References

  1. Amoli, M., Larijani, B., Thomson, W., Ollier, W. and Gonzalez-Gay, M. (2005) Two polymorphisms in the epithelial cell-derived neutrophil-activating peptide (ENA-78) gene. Dis. Markers 21, 75-77. https://doi.org/10.1155/2005/864525
  2. Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., Strand, D., Czaja, J., Schlaak, J. F., Lehr, H. A., Autschbach, F., Schürmann, G., Nishimoto, N., Yoshizaki, K., Ito, H., Kishimoto, T., Galle, P. R., Rose-John, S. and Neurath, M. F. (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal infl ammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583-588. https://doi.org/10.1038/75068
  3. Autschbach, F., Giese, T., Gassler, N., Sido, B., Heuschen, G., Heuschen, U., Zuna, I., Schulz, P., Weckauf, H., Berger, I., Otto, H. F. and Meuer, S. C. (2002) Cytokine/chemokine messenger-RNA expression profi les in ulcerative colitis and Crohn's disease. Virchows Arch. 441, 500-513. https://doi.org/10.1007/s00428-002-0684-z
  4. Baugh, M., Perry, M., Hollander, A., Davies, D., Cross, S., Lobo, A., Taylor, C. J. and Evans, G. S. (1999) Matrix metalloproteinase levels are elevated in infl ammatory bowel disease. Gastroenterology 117, 814-822. https://doi.org/10.1016/S0016-5085(99)70339-2
  5. Binder, V. (2004) Epidemiology of IBD during the twentieth century: an integrated view. Best Pract. Res. Clin. Gastroenterol. 18, 463-479. https://doi.org/10.1016/j.bpg.2003.12.002
  6. Cole, A., Ganz, T., Liese, A., Burdick, M., Liu, L. and Strieter, R. (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623-7. https://doi.org/10.4049/jimmunol.167.2.623
  7. Costello, C., Mah, N., Hasler, R., Rosenstiel, P., Waetzig, G., Hahn, A., Lu, T., Gurbuz, Y., Nikolaus, S., Albrecht, M., Hampe, J., Lucius, R., Kloppel, G., Eickhoff, H., Lehrach, H., Lengauer, T. and Schreiber, S. (2005) Dissection of the infl ammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med. 2, e199. https://doi.org/10.1371/journal.pmed.0020199
  8. Dieckgraefe, B., Crimmins, D., Landt, V., Houchen, C., Anant, S., Porche-Sorbet, R. and Ladenson, J. H. (2002) Expression of the regenerating gene family in infl ammatory bowel disease mucosa: Reg Ialpha upregulation, processing, and antiapoptotic activity. J. Investig. Med. 50, 421-434. https://doi.org/10.2310/6650.2002.32518
  9. Egesten, A., Eliasson, M., Olin, A., Erjefält, J., Bjartell, A., Sangfelt, P. and Carlson, M. (2007) The proinfl ammatory CXC-chemokines GRO-alpha/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids. Int. J. Colorectal. Dis. 22, 1421-1427. https://doi.org/10.1007/s00384-007-0370-3
  10. Egesten, A., Olin, A., Linge, H., Yadav, M., Morgelin, M., Karlsson, A. and Collin, M. (2009) SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 4, e4769. https://doi.org/10.1371/journal.pone.0004769
  11. Fukata, M., Chen, A., Klepper, A., Krishnareddy, S., Vamadevan, A., Thomas, L., Xu, R., Inoue, H., Arditi, M., Dannenberg, A. J. and Abreu, M. T. (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862-877. https://doi.org/10.1053/j.gastro.2006.06.017
  12. Helwig, U., Gionchetti, P., Rizzello, F., Lammers, K., Kuhbacher, T., Schreiber, S., Baggiolini, M., Uguccioni, M. and Campieri, M. (2004) CXC and CC chemokine expression in inflamed and noninflamed pelvic ileal pouch tissue. Int. J. Colorectal. Dis. 19, 165-170. https://doi.org/10.1007/s00384-003-0500-5
  13. Jonsson, D., Amisten, S., Bratthall, G., Holm, A. and Nilsson, B. (2009) LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm. Res. 58, 791-796. https://doi.org/10.1007/s00011-009-0049-z
  14. Khan, I., Al-Awadi, F., Thomas, N., Haridas, S. and Anim, J. (2002) Cyclooxygenase-2 inhibition and experimental colitis: beneficial effects of phosphorothioated antisense oligonucleotide and meloxicam. Scand. J. Gastroenterol. 37, 1428-1436. https://doi.org/10.1080/003655202762671314
  15. Kitamura, K., Nakamoto, Y., Kaneko, S. and Mukaida, N. (2004) Pivotal roles of interleukin-6 in transmural infl ammation in murine T cell transfer colitis. J. Leukoc. Biol. 76, 1111-1117. https://doi.org/10.1189/jlb.0604328
  16. Kobayashi, Y. (2008) The role of chemokines in neutrophil biology. Front Biosci. 13, 2400-2407. https://doi.org/10.2741/2853
  17. Kwon, J., Keates, A., Anton, P., Botero, M., Goldsmith, J. and Kelly, C. (2005) Topical antisense oligonucleotide therapy against LIX, an enterocyte-expressed CXC chemokine, reduces murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1075-1083. https://doi.org/10.1152/ajpgi.00073.2005
  18. Lawrance, I., Fiocchi, C. and Chakravarti, S. (2001) Ulcerative colitis and Crohn's disease: distinctive gene expression profi les and novel susceptibility candidate genes. Hum. Mol. Genet. 10, 445-456. https://doi.org/10.1093/hmg/10.5.445
  19. Lee, J., Hwang, B., Kim, K., Nam, J. and Hong, Y. and Lee, J. (2003) Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis. Biochem. Pharmacol. 66, 1925-1933. https://doi.org/10.1016/S0006-2952(03)00553-7
  20. Lobenhofer, E., Bushel, P., Afshari, C. and Hamadeh, H. (2001) Progress in the application of DNA microarrays. Environ. Health Perspect. 109, 881-891. https://doi.org/10.1289/ehp.01109881
  21. Louis, E., Ribbens, C., Godon, A., Franchimont, D., De Groote, D., Hardy, N., Boniver, J., Belaiche, J. and Malaise, M. (2000) Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by infl amed mucosa in infl ammatory bowel disease. Clin. Exp. Immunol. 120, 241-246. https://doi.org/10.1046/j.1365-2249.2000.01227.x
  22. McCormack, G., Moriarty, D., O'Donoghue, D., McCormick, P., Sheahan, K. and Baird, A. (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm. Res. 50, 491-495. https://doi.org/10.1007/PL00000223
  23. Ogawa, H., Fukushima, K., Naito, H., Funayama, Y., Unno, M., Takahashi, K., Kitayama, T., Matsuno, S., Ohtani, H., Takasawa, S., Okamoto, H. and Sasaki, I. (2003) Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm. Bowel Dis. 9, 162-170. https://doi.org/10.1097/00054725-200305000-00003
  24. Pallone, F. and Monteleone, G. (1998) Interleukin 12 and Th1 responses in inflammatory bowel disease. Gut 43, 735-736. https://doi.org/10.1136/gut.43.6.735
  25. Papadakis, K. (2004) Chemokines in inflammatory bowel disease. Curr. Allergy Asthma Rep. 4, 83-89. https://doi.org/10.1007/s11882-004-0048-7
  26. Park, J., Oh, S., Lim, S., Lee, Y., Shin, H., Oh, Y., Choe, N. H., Park, J. H. and Kim, J. K. (2006) Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem. Biophys. Res. Commun. 351, 146-152. https://doi.org/10.1016/j.bbrc.2006.10.008
  27. Rafii, F., Ruseler-Van Embden, J. and van Lieshout, L. (1999) Changes in bacterial enzymes and PCR profiles of fecal bacteria from a patient with ulcerative colitis before and after antimicrobial treatments. Dig. Dis. Sci. 44, 637-642 https://doi.org/10.1023/A:1026634229934
  28. Salmela, M., MacDonald, T., Black, D., Irvine, B., Zhuma, T., Saarialho-Kere, U. and Pender, S. L. (2002) Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut 51, 540-547. https://doi.org/10.1136/gut.51.4.540
  29. Sasaki, S., Yoneyama, H., Suzuki, K., Suriki, H., Aiba, T., Watanabe, S., Kawauchi, Y., Kawachi, H., Shimizu, F., Matsushima, K, Asakura, H, and Narumi, S. (2002) Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival. Eur. J. Immunol. 32, 3197-3205. https://doi.org/10.1002/1521-4141(200211)32:11<3197::AID-IMMU3197>3.0.CO;2-1
  30. Schreiber, S., Nikolaus, S., Hampe, J., Hamling, J., Koop, I., Groessner, B., Lochs, H. and Raedler, A. (1999) Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet. 353, 459-461. https://doi.org/10.1016/S0140-6736(98)03339-X
  31. Shanahan, F. (2002) Crohn's disease. Lancet 359, 62-69. https://doi.org/10.1016/S0140-6736(02)07284-7
  32. Shimoyama, T., Sawada, K., Hiwatashi, N., Sawada, T., Matsueda, K., Munakata, A., Asakura, H., Tanaka, T., Kasukawa, R., Kimura, K., Suzuki, Y., Nagamachi, Y., Muto, T., Nagawa, H., Iizuka, B., Baba, S., Nasu, M., Kataoka, T., Kashiwagi, N. and Saniabadi, A. R. (2001) Safety and efficacy of granulocyte and monocyte adsorption apheresis in patients with active ulcerative colitis: a multicenter study. J. Clin. Apher. 16, 1-9. https://doi.org/10.1002/jca.1000
  33. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxidants and Antioxidants, Pt A. 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  34. Szkaradkiewicz, A., Marciniak, R., Chudzicka-Strugała, I., Wasilewska, A., Drews, M., Majewski, P., Karpinski, T. and Zwozdziak, B. (2009) Proinfl ammatory cytokines and IL-10 in infl ammatory bowel disease and colorectal cancer patients. Arch. Immunol. Ther. Exp. (Warsz) 57, 291-294. https://doi.org/10.1007/s00005-009-0031-z
  35. te Velde, A., de Kort, F., Sterrenburg, E., Pronk, I., ten Kate, F., Hommes, D. and van Deventer, S. J. (2007) Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease. Inflamm. Bowel Dis. 13, 325-330 https://doi.org/10.1002/ibd.20079
  36. Tipoe, G., White, F. and Pritchett, C. (1992) A morphometric study of histological variations during cellular differentiation of normal human colorectal epithelium. J. Anat. 181(Pt 2), 189-197.
  37. Uguccioni, M., Gionchetti, P., Robbiani, D., Rizzello, F., Peruzzo, S., Campieri, M. and Baggiolini, M. (1999) Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am. J. Pathol. 155, 331-336. https://doi.org/10.1016/S0002-9440(10)65128-0
  38. Xiufen, W., Hiramatsu, N. and Matsubara, M. (2004) The antioxidative activity of traditional Japanese herbs. Biofactors 21, 281-284. https://doi.org/10.1002/biof.552210155
  39. Yang, H., Oh, S., Lim, S., Shin, H., Oh, Y. and Kim, J. (2008) Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother. Res. 22, 102-107. https://doi.org/10.1002/ptr.2274
  40. Yang, S, Choi, M, Kim, O, Myung, S, Jung, H, Hong, W., Kim, J. H., and Min, Y. I. (2002) The increased expression of an array of C-X-C and C-C chemokines in the colonic mucosa of patients with ulcerative colitis: regulation by corticosteroids. Am. J. Gastroenterol. 97, 126-132. https://doi.org/10.1111/j.1572-0241.2002.05431.x
  41. Yoo, H., Kang, H., Jung, H., Kim, K., Lim, C. and Park, E. (2008) Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of Saururus chinensis extract. J. Ethnopharmacol. 120, 282-286. https://doi.org/10.1016/j.jep.2008.08.016
  42. Zhong, W., Kolls, J., Chen, H., McAllister, F., Oliver, P. and Zhang, Z. (2008) Chemokines orchestrate leukocyte trafficking in inflammatory bowel disease. Front Biosci. 13, 1654-1664. https://doi.org/10.2741/2789

Cited by

  1. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract vol.146, pp.1, 2013, https://doi.org/10.1016/j.jep.2012.12.034