DOI QR코드

DOI QR Code

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou (Department of Biomedical Technology, College of Engineering, Sangmyung University)
  • Received : 2010.12.15
  • Accepted : 2011.01.21
  • Published : 2011.01.31

Abstract

G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Keywords

References

  1. AbdAlla, S., Lother, H., el Massiery, A. and Quitterer, U. (2001) IncreasedAT (1) receptor heterodimers in preeclampsia mediateenhanced angiotensin II responsiveness. Nat. Med. 7, 1003-1009. https://doi.org/10.1038/nm0901-1003
  2. Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I.,Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives,M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P.,Mouillac, B. and Durroux, T. (2010) Time-resolved FRET betweenGPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol.6, 587-594. https://doi.org/10.1038/nchembio.396
  3. Alfaras-Melainis, K., Gomes, I., Rozenfeld, R., Zachariou, V. and Devi,L. (2009) Modulation of opioid receptor function by protein-proteininteractions. Front Biosci. 14, 3594-3607.
  4. Auld, D. S., Thorne, N., Maguire, W. F. and Inglese, J. (2009) Mechanismof PTC124 activity in cell-based luciferase assays of nonsensecodon suppression. Proc. Natl. Acad. Sci. USA. 106, 3585-3590. https://doi.org/10.1073/pnas.0813345106
  5. Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling.Nature 361, 315-325. https://doi.org/10.1038/361315a0
  6. Bhushan, R. G., Sharma, S. K., Xie, Z., Daniels, D. J. and Portoghese,P. S. (2004) A bivalent ligand (KDN-21) reveals spinal delta andkappa opioid receptors are organized as heterodimers that giverise to delta(1) and kappa(2) phenotypes. Selective targeting ofdelta-kappa heterodimers. J. Med. Chem. 47, 2969-2972. https://doi.org/10.1021/jm0342358
  7. Bovolenta, S., Foti, M., Lohmer, S. and Corazza, S. (2007) Developmentof a Ca(2+)-activated photoprotein, Photina, and its applicationto high-throughput screening. J. Biomol. Screen 12, 694-704. https://doi.org/10.1177/1087057107301497
  8. Branchek, T. A., Smith, K. E., Gerald, C. and Walker, M. W. (2000)Galanin receptor subtypes. Trends Pharmacol. Sci. 21, 109-117. https://doi.org/10.1016/S0165-6147(00)01446-2
  9. Burbaum, J. J. and Sigal, N. H. (1997) New technologies for high-throughputscreening. Curr. Opin. Chem. Biol. 1, 72-78. https://doi.org/10.1016/S1367-5931(97)80111-1
  10. Cabello, N., Gandia, J., Bertarelli, D. C., Watanabe, M., Lluis, C.,Franco, R., Ferre, S., Lujan, R. and Ciruela, F. (2009) Metabotropicglutamate type 5, dopamine D2 and adenosine A2a receptors formhigher-order oligomers in living cells. J. Neurochem. 109, 1497-1507. https://doi.org/10.1111/j.1471-4159.2009.06078.x
  11. Calebiro, D., Nikolaev, V. O., Persani, L. and Lohse, M. J. (2010) Signalingby internalized G-protein-coupled receptors. Trends. Pharmacol.Sci. 31, 221-228. https://doi.org/10.1016/j.tips.2010.02.002
  12. Chen, X. P., Yang, W., Fan, Y., Luo, J. S., Hong, K., Wang, Z., Yan, J.F., Chen, X., Lu, J. X., Benovic, J. L. and Zhou, N. M. (2010) Structuraldeterminants in the second intracellular loop of the humancannabinoid CB1 receptor mediate selective coupling to G(s) andG(i). Br. J. Pharmacol. 161, 1817-1834. https://doi.org/10.1111/j.1476-5381.2010.01006.x
  13. Cheng, Z., Tu, C., Rodriguez, L., Chen, T. H., Dvorak, M. M., Margeta,M., Gassmann, M., Bettler, B., Shoback, D. and Chang, W. (2007)Type B gamma-aminobutyric acid receptors modulate the functionof the extracellular Ca2+-sensing receptor and cell differentiation inmurine growth plate chondrocytes. Endocrinology 148, 4984-4992. https://doi.org/10.1210/en.2007-0653
  14. Ciruela, F., Escriche, M., Burgueno, J., Angulo, E., Casado, V., Soloviev,M. M., Canela, E. I., Mallol, J., Chan, W. Y., Lluis, C., McIlhinney,R. A. and Franco, R. (2001) Metabotropic glutamate 1alphaand adenosine A1 receptors assemble into functionally interactingcomplexes. J. Biol. Chem. 276, 18345-18351. https://doi.org/10.1074/jbc.M006960200
  15. Daly, C. J. and McGrath, J. C. (2003) Fluorescent ligands, antibodies,and proteins for the study of receptors. Pharmacol. Ther. 100,101-118. https://doi.org/10.1016/j.pharmthera.2003.08.001
  16. Daniels, D. J., Lenard, N. R., Etienne, C. L., Law, P. Y., Roerig, S. C.and Portoghese, P. S. (2005) Opioid-induced tolerance and dependencein mice is modulated by the distance between pharmacophoresin a bivalent ligand series. Proc. Natl. Acad. Sci. USA 102,19208-19213. https://doi.org/10.1073/pnas.0506627102
  17. Decaillot, F. M., Rozenfeld, R., Gupta, A. and Devi, L. A. (2008) Cellsurface targeting of mu-delta opioid receptor heterodimers byRTP4. Proc. Natl. Acad. Sci. USA 105, 16045-16050. https://doi.org/10.1073/pnas.0804106105
  18. Dodgson, K., Gedge, L., Murray, D. C. and Coldwell, M. (2009) A100K well screen for a muscarinic receptor using the Epic labelfreesystem--a refl ection on the benefi ts of the label-free approachto screening seven-transmembrane receptors. J. Recept. Signal.Transduct. Res. 29, 163-172. https://doi.org/10.1080/10799890903079844
  19. Dupriez, V. J., Maes, K., Le Poul, E., Burgeon, E. and Detheux, M.(2002) Aequorin-based functional assays for G-protein-coupled receptors,ion channels, and tyrosine kinase receptors. ReceptorsChannels 8, 319-330. https://doi.org/10.1080/10606820214646
  20. Eapen, M. S., Sodhi, R., Balakrishnan, G., Dastidar, S., Ray, A. andVijayakrishnan, L. (2010) Evaluation of nonradioactive cell-freecAMP assays for measuring in vitro phosphodiesterase activity.Pharmacology 85, 280-285. https://doi.org/10.1159/000290641
  21. Fan, F., Binkowski, B. F., Butler, B. L., Stecha, P. F., Lewis, M. K. andWood, K. V. (2008) Novel genetically encoded biosensors usingfirefly luciferase. ACS Chem. Biol. 3, 346-351. https://doi.org/10.1021/cb8000414
  22. Ferre, S., Baler, R., Bouvier, M., Caron, M. G., Devi, L. A., Durroux,T., Fuxe, K., George, S. R., Javitch, J. A., Lohse, M. J., Mackie,K., Milligan, G., Pfl eger, K. D., Pin, J. P., Volkow, N. D., Waldhoer,M., Woods, A. S. and Franco, R. (2009) Building a new conceptualframework for receptor heteromers. Nat. Chem. Biol. 5, 131-134. https://doi.org/10.1038/nchembio0309-131
  23. Ferre, S., Karcz-Kubicha, M., Hope, B. T., Popoli, P., Burgueno, J.,Gutierrez, M. A., Casado, V., Fuxe, K., Goldberg, S. R., Lluis, C.,Franco, R. and Ciruela, F. (2002) Synergistic interaction betweenadenosine A2A and glutamate mGlu5 receptors: implications forstriatal neuronal function. Proc. Natl. Acad. Sci. USA. 99, 11940-11945. https://doi.org/10.1073/pnas.172393799
  24. Ferre, S., Navarro, G., Casado, V., Cortes, A., Mallol, J., Canela, E.I., Lluis, C. and Franco, R. (2010) G protein-coupled receptor heteromersas new targets for drug development. Prog. Mol. Biol.Transl. Sci. 91, 41-52. https://doi.org/10.1016/S1877-1173(10)91002-8
  25. Fiorentini, C., Busi, C., Gorruso, E., Gotti, C., Spano, P. and Missale,C. (2008) Reciprocal regulation of dopamine D1 and D3 receptorfunction and traffi cking by heterodimerization. Mol. Pharmacol. 74,59-69. https://doi.org/10.1124/mol.107.043885
  26. Franco, R., Casado, V., Cortes, A., Mallol, J., Ciruela, F., Ferre, S.,Lluis, C. and Canela, E. I. (2008) G-protein-coupled receptor heteromers:function and ligand pharmacology. Br. J. Pharmacol.153(Suppl 1), S90-98. https://doi.org/10.1038/sj.bjp.0707538
  27. Gagne, A., Banks, P. and Hurt, S. D. (2002) Use of fl uorescence polarizationdetection for the measurement of fl uopeptidet binding to Gprotein-coupled receptors. J. Recept. Signal. Transduct. Res. 22,333-343. https://doi.org/10.1081/RRS-120014605
  28. Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J. andCaron, M. G. (2004) Desensitization of G protein-coupled receptorsand neuronal functions. Annu. Rev. Neurosci. 27, 107-144. https://doi.org/10.1146/annurev.neuro.27.070203.144206
  29. Gao, X., Hsu, C. K., Heinz, L. J., Morin, J., Shi, Y., Shukla, N. K., Smiley,D. L., Xu, J., Zhong, B. and Slieker, L. J. (2004) Europiumlabeledmelanin-concentrating hormone analogues: ligands formeasuring binding to melanin-concentrating hormone receptors 1and 2. Anal. Biochem. 328, 187-195. https://doi.org/10.1016/j.ab.2004.01.017
  30. Glickman, J. F., Schmid, A. and Ferrand, S. (2008) Scintillation proximityassays in high-throughput screening. Assay. Drug. Dev. Technol.6, 433-455. https://doi.org/10.1089/adt.2008.135
  31. Gonzalez-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V.,Lopez-Gimenez, J. F., Zhou, M., Okawa, Y., Callado, L. F., Milligan,G., Gingrich, J. A., Filizola, M., Meana, J. J. and Sealfon, S.C. (2008) Identifi cation of a serotonin/glutamate receptor compleximplicated in psychosis. Nature 452, 93-97. https://doi.org/10.1038/nature06612
  32. Hamdan, F. F., Percherancier, Y., Breton, B. and Bouvier, M. (2006)Monitoring protein-protein interactions in living cells by bioluminescenceresonance energy transfer (BRET). Curr Protoc Neurosci.Chapter 5, Unit 5. 23, John Wiley & Sons, Somerset.
  33. Hampton, S. L. and Kinnaird, A. I. (2010) Genetic interventions inmammalian cells; applications and uses in high-throughput screeningand drug discovery. Cell Biol. Toxicol. 26, 43-55. https://doi.org/10.1007/s10565-009-9140-z
  34. Handl, H. L. and Gillies, R. J. (2005) Lanthanide-based luminescentassays for ligand-receptor interactions. Life Sci. 77, 361-371. https://doi.org/10.1016/j.lfs.2005.01.009
  35. Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R.J. (2004) Lanthanide-based time-resolved fl uorescence of in cytoligand-receptor interactions. Anal. Biochem. 330, 242-250. https://doi.org/10.1016/j.ab.2004.04.012
  36. Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R.J. (2005) Development of a lanthanide-based assay for detectionof receptor-ligand interactions at the delta-opioid receptor. Anal.Biochem. 343, 299-307. https://doi.org/10.1016/j.ab.2005.05.040
  37. Hedley, L., Phagoo, S. B. and James, I. F. (1996) Measurement of intracellularcalcium in cell populations loaded with aequorin: neurokinin-1 responses in U373MG cells. Anal. Biochem. 236, 270-274. https://doi.org/10.1006/abio.1996.0166
  38. Hemmila, I. I. (1999) LANCEtrade mark: Homogeneous Assay Platformfor HTS. J. Biomol. Screen. 4, 303-308. https://doi.org/10.1177/108705719900400604
  39. Hirono, M., Yoshioka, T. and Konishi, S. (2001) GABA(B) receptor activationenhances mGluR-mediated responses at cerebellar excitatorysynapses. Nat. Neurosci. 4, 1207-1216.
  40. Inglese, J., Samama, P., Patel, S., Burbaum, J., Stroke, I. L. and Appell,K. C. (1998) Chemokine receptor-ligand interactions measured usingtime-resolved fluorescence. Biochemistry 37, 2372-2377. https://doi.org/10.1021/bi972161u
  41. Jalink, K. and Moolenaar, W. H. (2010) G protein-coupled receptors:the inside story. Bioessays 32, 13-16. https://doi.org/10.1002/bies.200900153
  42. Jansson, C. C., Pohjanoksa, K., Lang, J., Wurster, S., Savola, J. M.and Scheinin, M. (1999) Alpha2-adrenoceptor agonists stimulatehigh-affi nity GTPase activity in a receptor subtype-selective manner.Eur. J. Pharmacol. 374, 137-146. https://doi.org/10.1016/S0014-2999(99)00306-4
  43. Kamikubo, Y., Tabata, T., Kakizawa, S., Kawakami, D., Watanabe, M.,Ogura, A., Iino, M. and Kano, M. (2007) Postsynaptic GABAB receptorsignalling enhances LTD in mouse cerebellar Purkinje cells.J. Physiol. 585, 549-563. https://doi.org/10.1113/jphysiol.2007.141010
  44. Le Poul, E., Hisada, S., Mizuguchi, Y., Dupriez, V. J., Burgeon, E. andDetheux, M. (2002) Adaptation of aequorin functional assay to highthroughput screening. J. Biomol. Screen. 7, 57-65. https://doi.org/10.1177/108705710200700108
  45. Lee, S., Kim, G. D., Park, W. K., Cho, H., Lee, B. H., Yoo, S. E. andJae Yang, K. (2006) Development of a time-resolved fl uorometricassay for the high throughput screening of melanin concentratinghormone receptor antagonists. J. Pharmacol. Toxicol. Methods. 53,242-247. https://doi.org/10.1016/j.vascn.2005.09.001
  46. Lefkowitz, R. J. (2004) Historical review: a brief history and personalretrospective of seven-transmembrane receptors. Trends Pharmacol.Sci. 25, 413-422. https://doi.org/10.1016/j.tips.2004.06.006
  47. Lin, F. T., Miller, W. E., Luttrell, L. M. and Lefkowitz, R. J. (1999) Feedbackregulation of beta-arrestin1 function by extracellular signal-regulatedkinases. J. Biol. Chem. 274, 15971-15974. https://doi.org/10.1074/jbc.274.23.15971
  48. Liu, J., Gallagher, M., Horlick, R. A., Robbins, A. K. and Webb, M. L.(1998) A time resolved fluorometric assay for galanin receptors. J.Biomol. Screen 3, 19-27. https://doi.org/10.1177/108705719800300103
  49. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz,R. J. (1990). beta-Arrestin: a protein that regulates beta-adrenergicreceptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
  50. Luttrell, L. M. and Lefkowitz, R. J. (2002) The role of beta-arrestinsin the termination and transduction of G-protein-coupled receptorsignals. J. Cell. Sci. 115, 455-465.
  51. Maeda, A., Nishimura, S., Kameda, K., Imagawa, T., Shigekawa, M.and Barsoumian, E. L. (1996) Generation of cell transfectants expressingcardiac calcium ion channel and calcium indicator proteinaequorin. Anal. Biochem. 242, 31-39. https://doi.org/10.1006/abio.1996.0424
  52. Marcellino, D., Ferre, S., Casado, V., Cortes, A., Le Foll, B., Mazzola,C., Drago, F., Saur, O., Stark, H., Soriano, A., Barnes, C., Goldberg,S. R., Lluis, C., Fuxe, K. and Franco, R. (2008) Identifi cationof dopamine D1-D3 receptor heteromers. Indications for a roleof synergistic D1-D3 receptor interactions in the striatum. J. Biol.Chem. 283, 26016-26025. https://doi.org/10.1074/jbc.M710349200
  53. Maurel, D., Comps-Agrar, L., Brock, C., Rives, M. L., Bourrier, E., Ayoub,M. A., Bazin, H., Tinel, N., Durroux, T., Prezeau, L., Trinquet,E. and Pin, J. P. (2008) Cell-surface protein-protein interactionanalysis with time-resolved FRET and snap-tag technologies: applicationto GPCR oligomerization. Nat. Methods 5, 561-567. https://doi.org/10.1038/nmeth.1213
  54. Maurel, D., Kniazeff, J., Mathis, G., Trinquet, E., Pin, J. P. and Ansanay,H. (2004) Cell surface detection of membrane protein interactionwith homogeneous time-resolved fl uorescence resonance energytransfer technology. Anal. Biochem. 329, 253-262. https://doi.org/10.1016/j.ab.2004.02.013
  55. McGrath, J. C., Arribas, S. and Daly, C. J. (1996) Fluorescent ligandsfor the study of receptors [published erratum appears in TrendsPharmacol Sci 1997 May;18(5):181]. Trends Pharmacol. Sci. 17,393-399. https://doi.org/10.1016/S0165-6147(96)40004-9
  56. McGuinness, D., Malikzay, A., Visconti, R., Lin, K., Bayne, M., Monsma,F. and Lunn, C. A. (2009) Characterizing cannabinoid CB2 receptorligands using DiscoveRx PathHunter beta-arrestin assay. J.Biomol. Screen 14, 49-58.
  57. Oakley, R. H., Hudson, C. C., Cruickshank, R. D., Meyers, D. M.,Payne, R. E. Jr., Rhem, S. M. and Loomis, C. R. (2002) The cellulardistribution of fl uorescently labeled arrestins provides a robust,sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev. Technol. 1, 21-30. https://doi.org/10.1089/154065802761001275
  58. Perry, S. J. and Lefkowitz, R. J. (2002) Arresting developments in heptahelicalreceptor signaling and regulation. Trends Cell Biol. 12,130-138. https://doi.org/10.1016/S0962-8924(01)02239-5
  59. Peters, M. F., Knappenberger, K. S., Wilkins, D., Sygowski, L. A.,Lazor, L. A., Liu, J. and Scott, C. W. (2007) Evaluation of cellulardielectric spectroscopy, a whole-cell, label-free technology for drugdiscovery on Gi-coupled GPCRs. J. Biomol. Screen 12, 312-319. https://doi.org/10.1177/1087057106298637
  60. Pinilla, C., Appel, J. R., Borras, E. and Houghten, R. A. (2003) Advancesin the use of synthetic combinatorial chemistry: mixture-basedlibraries. Nat. Med 9, 118-122. https://doi.org/10.1038/nm0103-118
  61. Rink, T. J. (1990) Receptor-mediated calcium entry. FEBS Lett. 268,381-385. https://doi.org/10.1016/0014-5793(90)81290-5
  62. Rives, M. L., Vol, C., Fukazawa, Y., Tinel, N., Trinquet, E., Ayoub, M.A., Shigemoto, R., Pin, J. P. and Prezeau, L. (2009) Crosstalkbetween GABAB and mGlu1a receptors reveals new insight intoGPCR signal integration. EMBO J. 28, 2195-2208. https://doi.org/10.1038/emboj.2009.177
  63. Rozenfeld, R. and Devi, L. A. (2010) Receptor heteromerization anddrug discovery. Trends Pharmacol. Sci. 31, 124-130. https://doi.org/10.1016/j.tips.2009.11.008
  64. Rubenstein, K. (2008). GPCRs: Dawn of a new era? Insight Pharma. Reports., Needham.
  65. Sanger, G. J., Westaway, S. M., Barnes, A. A., Macpherson, D. T., Muir,A. I., Jarvie, E. M., Bolton, V. N., Cellek, S., Naslund, E., Hellstrom,P. M., Borman, R. A., Unsworth, W. P., Matthews, K. L. and Lee, K.(2009) GSK962040: a small molecule, selective motilin receptoragonist, effective as a stimulant of human and rabbit gastrointestinalmotility. Neurogastroenterol. Motil. 21, 657-664, e630-651. https://doi.org/10.1111/j.1365-2982.2009.01270.x
  66. Schroder, R., Janssen, N., Schmidt, J., Kebig, A., Merten, N., Hennen,S., Muller, A., Blattermann, S., Mohr-Andra, M., Zahn, S., Wenzel,J., Smith, N. J., Gomeza, J., Drewke, C., Milligan, G., Mohr, K. andKostenis, E. (2010) Deconvolution of complex G protein-coupledreceptor signaling in live cells using dynamic mass redistributionmeasurements. Nat. Biotechnol. 28, 943-949. https://doi.org/10.1038/nbt.1671
  67. Shenoy, S. K. and Lefkowitz, R. J. (2003) Multifaceted roles of beta-arrestinsin the regulation of seven-membrane-spanning receptortraffi cking and signalling. Biochem. J. 375, 503-515. https://doi.org/10.1042/BJ20031076
  68. Small, K. M., Schwarb, M. R., Glinka, C., Theiss, C. T., Brown, K. M.,Seman, C. A. and Liggett, S. B. (2006) Alpha2A- and alpha2C-adrenergicreceptors form homo- and heterodimers: the heterodimericstate impairs agonist-promoted GRK phosphorylation andbeta-arrestin recruitment. Biochemistry 45, 4760-4767. https://doi.org/10.1021/bi052074z
  69. Soriano, A., Ventura, R., Molero, A., Hoen, R., Casado, V., Cortes, A.,Fanelli, F., Albericio, F., Lluis, C., Franco, R. and Royo, M. (2009)Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonistbivalent ligands as pharmacological tools to detect A2A-D2 receptorheteromers. J. Med. Chem. 52, 5590-5602. https://doi.org/10.1021/jm900298c
  70. Stables, J., Green, A., Marshall, F., Fraser, N., Knight, E., Sautel, M.,Milligan, G., Lee, M. and Rees, S. (1997) A bioluminescent assayfor agonist activity at potentially any G-protein-coupled receptor.Anal. Biochem. 252, 115-126. https://doi.org/10.1006/abio.1997.2308
  71. Tabata, T., Araishi, K., Hashimoto, K., Hashimotodani, Y., van der Putten,H., Bettler, B. and Kano, M. (2004) Ca2+ activity at GABAB receptorsconstitutively promotes metabotropic glutamate signalingin the absence of GABA. Proc. Natl. Acad. Sci. USA. 101, 16952-16957. https://doi.org/10.1073/pnas.0405387101
  72. Tamayama, T., Maemura, K., Kanbara, K., Hayasaki, H., Yabumoto, Y.,Yuasa, M. and Watanabe, M. (2005) Expression of GABA(A) andGABA(B) receptors in rat growth plate chondrocytes: activation ofthe GABA receptors promotes proliferation of mouse chondrogenicATDC5 cells. Mol. Cell Biochem. 273, 117-126. https://doi.org/10.1007/s11010-005-8159-6
  73. Toms, N. J. and Roberts, P. J. (1999) Group 1 mGlu receptors elevate[Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergywith adenosine A1 receptors. Neuropharmacology 38, 1511-1517. https://doi.org/10.1016/S0028-3908(99)00090-8
  74. Verdonk, E., Johnson, K., McGuinness, R., Leung, G., Chen, Y. W.,Tang, H. R., Michelotti, J. M. and Liu, V. F. (2006) Cellular dielectricspectroscopy: a label-free comprehensive platform for functionalevaluation of endogenous receptors. Assay Drug Dev. Technol. 4,609-619. https://doi.org/10.1089/adt.2006.4.609
  75. Vidi, P. A. and Watts, V. J. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupledreceptor oligomerization and signaling. Mol. Pharmacol.75, 733-739. https://doi.org/10.1124/mol.108.053819
  76. Vilardaga, J. P., Nikolaev, V. O., Lorenz, K., Ferrandon, S., Zhuang,Z. and Lohse, M. J. (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling.Nat. Chem. Biol. 4, 126-131. https://doi.org/10.1038/nchembio.64
  77. Waldhoer, M., Fong, J., Jones, R. M., Lunzer, M. M., Sharma, S. K.,Kostenis, E., Portoghese, P. S. and Whistler, J. L. (2005) A heterodimer-selective agonist shows in vivo relevance of G proteincoupledreceptor dimers. Proc. Natl. Acad. Sci. USA. 102, 9050-9055. https://doi.org/10.1073/pnas.0501112102
  78. Wang, H. B., Guan, J. S., Bao, L. and Zhang, X. (2008) Distinct subcellulardistribution of delta-opioid receptor fused with various tags inPC12 cells. Neurochem. Res. 33, 2028-2034. https://doi.org/10.1007/s11064-008-9678-9
  79. Wu, S. and Liu, B. (2005). Application of scintillation proximity assay indrug discovery. Bio. Drugs 19, 383-392.
  80. Xie, Z., Bhushan, R. G., Daniels, D. J. and Portoghese, P. S. (2005) Interactionof bivalent ligand KDN21 with heterodimeric delta-kappaopioid receptors in human embryonic kidney 293 cells. Mol. Pharmacol.68, 1079-1086. https://doi.org/10.1124/mol.105.012070
  81. Zhao, X., Jones, A., Olson, K. R., Peng, K., Wehrman, T., Park, A.,Mallari, R., Nebalasca, D., Young, S. W. and Xiao, S. H. (2008)A homogeneous enzyme fragment complementation-based beta-arrestintranslocation assay for high-throughput screening of G-protein-coupled receptors. J. Biomol. Screen 13, 737-747. https://doi.org/10.1177/1087057108321531

Cited by

  1. Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7575
  2. Review cyclic peptides on a merry-go-round; towards drug design vol.104, pp.5, 2015, https://doi.org/10.1002/bip.22669
  3. Utilization of an Intracellular Calcium Mobilization Assay for the Screening of Transduced FK506-Binding Proteins vol.19, pp.7, 2011, https://doi.org/10.1089/adt.2021.065