DOI QR코드

DOI QR Code

1550 nm InGaAsP LD 광송신회로의 PSPICE 모델 및 광변조 특성 해석

PSPICE Modeling and Characterization of Optical Transmitter with 1550 nm InGaAsP LDs

  • 구유림 (홍익대학교 전자정보통신공학과) ;
  • 김종대 (홍익대학교 전자정보통신공학과) ;
  • 이종창 (홍익대학교 전자정보통신공학과)
  • Goo, Yu-Rim (Electronic & Electrical Engineering, Hongik University) ;
  • Kim, Jong-Dae (Electronic & Electrical Engineering, Hongik University) ;
  • Yi, Jong-Chang (Electronic & Electrical Engineering, Hongik University)
  • 투고 : 2011.01.26
  • 심사 : 2011.02.09
  • 발행 : 2011.02.25

초록

다층 비율 방정식을 이용한 1550 nm InGaAsP 레이저 다이오드의 PSPICE 등가회로 모델을 제안하고 구현하였다. 비율 방정식에 필요한 레이저 다이오드 파라미터들은 자기충족적 양자우물 해석법을 이용하여 도출하였다. 이 모델을 이용하여 실제 레이저 다이오드와 드라이버 IC를 포함하는 광송신기 회로 전체를 PSPICE로 구현하여 그 출력 값과 측정치를 비교하였다. 이 비교를 통하여 실제 레이저 다이오드의 패키징 시 발생하는 기생 커패시터 값을 산출하였다. 이를 바탕으로 한 PSPICE 출력 값은 여러 동작 주파수에서 실제 회로의 측정값과 일치함을 보였다.

The PSPICE equivalent circuit elements of a 1550 nm InGaAsP laser diode were derived by using multi-level rate equations. The device parameters were extracted by using a self-consistent numerical method for the optical gain properties of the MQW active regions. The resulting equivalent circuit model is also applied to an actual optical transmitter, and its PSPICE simulation results show good agreement with the measured results once the parasitic capacitance due to the packaging is taken into account.

키워드

참고문헌

  1. J. I. Shim, J. C. Yi, and J. Kim, Fundamentals of Modern Seemiconductor Light Emitting Devices (Books Hill, Seoul, Korea, 2008), Chapter 3.
  2. D. W. Lim, H. U. Cho, H. K. Sung, Y. M. Jhon, and J. C. Yi, “A PSPICE circuit modeling of strained AlGaInN laser diode based on the multilevel rate equations,” J. Opt. Soc. Korea 13, 386-391 (2009). https://doi.org/10.3807/JOSK.2009.13.3.386
  3. M. Morishita, T. Ohmi, and J. Nishizawa, “Impedance characteristics of double hetero structure laser diodes,” Solid State Electronics 22, 951-962 (1979). https://doi.org/10.1016/0038-1101(79)90068-6
  4. J. Katz, S. Margalit, C. Harder, D. Wilt, and A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electronics 17, 4-7 (1981). https://doi.org/10.1109/JQE.1981.1070628
  5. L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Quantum Electronics 1, 494-504 (1995). https://doi.org/10.1109/2944.401234
  6. D. McDonald and R. F. O'Dowd, “Comparison of two-and three-level rate equations in the modeling of quantum-well lasers,” IEEE J. Quantum Electronics 31, 1927-1934 (1995). https://doi.org/10.1109/3.469272
  7. B. P. C. Tsou and D. L. Pulfrey, “A versatile SPICE model for quantum-well lasers,” IEEE J. Quantum Electron. 33, 246-254 (1997). https://doi.org/10.1109/3.552265
  8. J. C. Yi, H. U. Cho, and Y. M. Jhon, “Self-consistent analysis of the relative intensity noise characteristics in the strained AlGaInN laser diodes with a high frequency circuit modulation effects,” J. Opt. Soc. Korea 12, 42-48 (2008). https://doi.org/10.3807/JOSK.2008.12.1.042