References
- 김규태, 김태순, 김수영, 허준행 (2008). “누가분포함수를 활용한 강우강도식의 국내적용성 평가.” 대한토목학회논문집, 대한토목학회, 제28권, 제4B호, pp. 363-374.
- 김민규, 김재희, 김승 (2008). “유입량의 변동성을 고려한 저수지 연계 운영 모형의 가중치 산정.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제1호, pp. 1-15.
- 김수영, 허준행, 신홍준, 고연우 (2009). “Gumbel 분포에 대한 도시위치공식의 비교.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제5호, pp. 365-374. https://doi.org/10.3741/JKWRA.2009.42.5.365
- 김태순, 허준행, 배덕효 (2007a). “단일저수지 월간운영률의개발: 1. 다목적유전자알고리즘을적용한조각선형운영률.” 대한토목학회논문집, 대한토목학회, 제27권, 제4B호, pp. 387- 393.
- 김태순, 허준행, 배덕효, 김진훈(2007b). “단일저수지 월간 운영률의 개발 : 2. 확률론적 장기저류량 예측.” 대한토목학회논문집, 대한토목학회, 제27권, 제4B호, pp. 395-401.
- 김태순, 신주영, 김수영, 허준행 (2007). “유전자알고리즘을이용한강우강도식매개변수추정에관한연구(I): 기존 매개변수추정방법과의 비교.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제10호, pp. 811-821.
- 신주영, 김태순, 김수영, 허준행 (2007). “유전자알고리즘을 이용한 강우강도식 매개변수 추정에 관한 연구(II): 장.단기간 구분 방법의 제시.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제10호, pp. 823-832. https://doi.org/10.3741/JKWRA.2007.40.10.823
- Adamowski, K. (1981). “Plotting position formula forflood frequency.” Water Resource Bulletin, Vol. 17,No. 2, pp. 197-201. https://doi.org/10.1111/j.1752-1688.1981.tb03922.x
- Ahmed, J.A., and Sarma, A.K. (2005). “Genetic algorithmfor optimal operating policy of a multipurposereservoir.” Water Resources Management, Vol. 19,No. 2, pp. 145-161. https://doi.org/10.1007/s11269-005-2704-7
- Arnell, N.W., Beran, M., and Hosking, J.R.M. (1986).“Unbiased plotting positions for the general extremevalue distribution.” Journal of Hydrology, Vol. 86, pp.59-69. https://doi.org/10.1016/0022-1694(86)90006-5
- Beard, L.R. (1942). “Statistical analysis in hydrology.”Proceedings of the American Society of CivilEngineers, Vol. 68, pp. 1077-1088.
- Benson, M.A. (1975). “Plotting positions and economicsof engineering planning.” Proceedings of the AmericanSociety of Civil Engineering, Vol. 88, pp. 58-71.
- Beyer, H.-G., and Deb, K. (2001). “On self-adaptivefeatures in real-parameter evolutionary algorithms.”IEEE Transactions on Evolutionary Computation,Vol. 5, No. 3, pp. 250-270. https://doi.org/10.1109/4235.930314
- Blom, G. (1958). Statistical Estimates and TransformedBeta Variables. Wiley, New York, NY.
- Cai, X.M., McKinney, D.C., and Lasdon, L.S. (2001).“Solving nonlinear water management models usinga combined genetic algorithm and linear programmingapproach.” Advances inWater Resources, Vol. 24, No.6, pp. 667-676. https://doi.org/10.1016/S0309-1708(00)00069-5
- Celeste, A.B., Suzuki, K., and Kadota, A. (2004). “Geneticalgorithms for real-time operation of multipurposewater resource systems.” Journal of Hydroinformatics,Vol. 6, No. 1, pp. 19-38.
- Chang, F.J., Chen, L., and Chang, L.C. (2005).“Optimizing the reservoir operating rule curves bygenetic algorithms.” Hydrological Processes, Vol. 19,No. 11, pp. 2277-2289. https://doi.org/10.1002/hyp.5674
- Chang, F.J., Lai, J.S., and Kao, L.S. (2003). “Optimizationof operation rule curves and flushing schedule in areservoir.” Hydrological Processes, Vol. 17, No. 8, pp.1623-1640. https://doi.org/10.1002/hyp.1204
- Chang, L.C. (2008). “Guiding rational reservoir floodoperation using penalty-type genetic algorithm."Journal of Hydrology, Vol. 354, No. 1-4, pp. 65-74. https://doi.org/10.1016/j.jhydrol.2008.02.021
- Chen, L. (2003). “Real coded genetic algorithm optimizationof long term reservoir operation.” Journal of theAmerican Water Resources Association, Vol. 39, No.5, pp. 1157-1165. https://doi.org/10.1111/j.1752-1688.2003.tb03699.x
- Chen, L., J. McPhee, J., and Yeh, W. W. G. (2007). “Adiversified multiobjective GA for optimizing reservoirrule curves.” Advances in Water Resources, Vol. 30,No. 5, pp. 1082-1093. https://doi.org/10.1016/j.advwatres.2006.10.001
- Cunnane, C. (1978). “Unbiased plotting positions - Areview.” Journal of Hydrology, Vol. 37, No. 3/4, pp.205-222. https://doi.org/10.1016/0022-1694(78)90017-3
- De, M. (2000). “A new unbiased plotting position formulafor Gumbel distribution.” Stochastic EnvironmentalResearch and Risk Assessment, Vol. 14, pp. 1-7. https://doi.org/10.1007/s004770050001
- Deb, K., and Beyer, H.-G. (2001). “Self-adaptive geneticalgorithms with simulated binary crossover.” EvolutionaryComputation Journal, Vol. 9, No. 2, pp. 197-221. https://doi.org/10.1162/106365601750190406
- Filliben, J.J. (1969). Simple and robust linear estimationof the location parameter of a symmetric distribution.Unpublished Ph.D. dissertation, Princeton university,Princeton, New Jersey.
- Goel, N.K., and De, M. (1993). “Development of unbiasedplotting position formula for General ExtremeValue distribution.” Stochastic Environmental Researchand Risk Assessment, Vol. 7, pp. 1-13.
- Goldberg, D.E. (1989). Genetic algorithms in search,optimization & machine learning. Addison Wesley,Massachusetts.
- Greenwood, J.A., Landwehr, J.M., Matalas, N.C., andWallis, J.R. (1979). “Probability weighted moments :definition and relation to parameters of severaldistributions expressible in inverse Form.” WaterResources Research, Vol. 15, No. 5, pp. 1049-1054. https://doi.org/10.1029/WR015i005p01049
- Gringorten, I.I. (1963). “A plotting rule for extremeprobability paper.” Journal of Geophysical Research,Vol. 68, No. 3, pp. 813-814. https://doi.org/10.1029/JZ068i003p00813
- Gumbel, E.J. (1958). Statistics of Extremes. ColumbiaUniversity Press, New York, N.Y., pp. 28-34.
- Guo, S.L. (1990a). “A discussion on unbiased plottingpositions for the general extreme value distribution.”Journal of Hydrology, Vol. 121, pp. 33-44. https://doi.org/10.1016/0022-1694(90)90223-K
- Guo, S.L. (1990b). “Unbiased plotting position formulaefor historical floods.” Journal of Hydrology, Vol. 121,pp. 45-61. https://doi.org/10.1016/0022-1694(90)90224-L
- Haktanir, T., and Bozduman, A. (1995). “A study onsensitivity of the probability-weighted momentsmethod on the choice of the plotting position formula.”Journal of Hydrology, Vol. 168, pp. 265-281. https://doi.org/10.1016/0022-1694(94)02642-O
- Hazen A. (1914). “Storage to be provided in impoundingreservoirs for municipal water supply.” TransactionsAmerican Society of Civil Engineers, Vol. 1308, No.77, pp. 1547-1550.
- Herrera, F., Lozano, M., and Verdegay, J.L. (1998).“Tackling real-coded genetic algorithms: operatorsand tools for behavioural analysis.” Journal ArtificialIntelligence Review, Vol. 12, No. 4, doi>10.1023. https://doi.org/10.1023
- Holland, J.H. (1975). Adaptation in natural and artificialsystems. University of Michigan Press.
- Huang, W.C., Yuan, L.C., and Lee, C.M. (2002). “Linkinggenetic algorithms with stochastic dynamic programmingto the long-term operation of a multireservoirsystem.” Water Resources Research, Vol. 38, No. 12,pp. 1304. https://doi.org/10.1029/2001WR001122
- In-na, N., and Nguyen, V-T-V. (1989). “An unbiasedplotting position formula for the generalized extremevalue distribution.” Journal of Hydrology, Vol. 106, p.193-209. https://doi.org/10.1016/0022-1694(89)90072-3
- Jenkinson, A.F. (1955). “The frequency distribution ofthe annual maximum(or minimum) values of meteorologicalelements.” Quarterly Journal of the RoyalMeteorological Society, Vol. 87, pp. 158-171.
- Jothiprakash, V., and Shanthi, G. (2006). “Single reservoiroperating policies using genetic algorithm.” WaterResources Management, Vol. 20, No. 6, pp. 917-929. https://doi.org/10.1007/s11269-005-9014-y
- Kimball, B.F. (1946). “Assignment of frequencies to acompletely ordered set of sample data.” Transactionon the American Geophysical Union, Vol. 27, pp. 843-846. https://doi.org/10.1029/TR027i006p00843
- Kimball, B.F. (1960). “On the choice of plotting positionson probability paper.” Journal of American StatisticalAssociation, Vol. 55, pp. 546-560. https://doi.org/10.2307/2281914
- Lee, Y.D., Kim, S.K., and Ko, I.H. (2007). Geneticalgorithm to determine weighting factors in multipleobjective reservoir operation model under inflowuncertainty. Working Paper, Korea University.
- Nguyen, V-T-V., In-na, N., and Bobee, B. (1989). “Newplotting-position formula for Pearson type III distribution.”Journal of Hydraulic Engineering, Vol. 115,No. 6, pp. 709-730. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:6(709)
- Nguyen, V-T-V., and In-na, N. (1992). “Plottingformula for Pearson type III distribution consideringhistorical information.” Environmental Monitoringand Assessment, Vol. 23, pp. 137-152. https://doi.org/10.1007/BF00406958
- Reddy, M.J., and Kumar, D.N. (2006). “Optimal reservoiroperation using multi-objective evolutionary algorithm.”Water Resources Management, Vol. 20, No. 6, pp.861-878. https://doi.org/10.1007/s11269-005-9011-1
- Tung, C.P., Hsu, S.Y., Liu, C.M., and Li, J.S. (2003).“Application of the genetic algorithm for optimizingoperation rules of the LiYuTan Reservoir in Taiwan.”Journal of the American Water Resources Association,Vol. 39, No. 3, pp. 649-657. https://doi.org/10.1111/j.1752-1688.2003.tb03682.x
- Wardlaw, R., and Sharif, M. (1999). “Evaluation ofgenetic algorithms for optimal reservoir systemoperation.” Journal ofWater Resources Planning andManagement, Vol. 125, No. 1, pp. 25-33. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:1(25)
- Weibull, W. (1939). “A statistical theory of strength ofmaterials.” Ing. Vetenskaps Akad. Handl, No. 151,Generalstabens Litografiska Anstals Forlag, Stockholm.
- Xuewu, J., Jing, D., Shen, H.W., and Salas, J.D. (1984).“Probability plots for Pearson type III distribution.”Journal of Hydrology, Vol. 74, pp. 1-29. https://doi.org/10.1016/0022-1694(84)90137-9
Cited by
- Prediction of Local Scour Around Bridge Piers Using GEP Model vol.34, pp.6, 2014, https://doi.org/10.12652/Ksce.2014.34.6.1779