DOI QR코드

DOI QR Code

Effect of Orientation on Pool Boiling Heat Transfer in Annulus with Small Gap

경사각이 좁은 틈새를 가지는 환상공간 내부 풀비등 열전달에 미치는 영향

  • Received : 2010.05.28
  • Accepted : 2010.11.30
  • Published : 2011.03.01

Abstract

An experimental study was carried out to investigate the effect of the inclination angle on the nucleate pool boiling of saturated water at atmospheric pressure. We considered an annulus with a gap of 5 mm and a bottom opening. The inner tube of the annulus was heated, and the outer diameter and the length of the tube were 25.4 mm and 500 mm, respectively. The inclination angle was varied from horizontal to vertical. The results were compared to those for an annulus with a larger gap and a single tube. In the small-gap annulus, the effect of the inclination angle on the heat transfer was not significant. However, an early onset of the critical heat flux was observed at 80 kW/$m^2$ when the annulus was horizontal. Liquid agitation and bubble coalescence were considered to be the major heat-transfer mechanisms.

경사각이 대기압하의 포화상태인 물의 풀비등에 미치는 영향을 조사하기 위해 실험을 통한 연구를 수행하였다. 연구를 위하여 5mm의 틈새간격을 가지는 하부유로개폐 상태인 환상공간을 고려하였다. 환상공간의 내부에 설치된 튜브를 가열하였으며 튜브의 직경과 길이는 각각 25.4mm와 500mm이다. 경사각은 수평부터 수직까지 변경하였다. 본 실험의 결과를 틈새간격이 더 큰 환상공간 및 단일튜브에 대한 결과와 서로 비교하였다. 작은 틈새간격을 가지는 환상공간의 경우 경사각이 열전달에 미치는 영향은 그다지 크지 않음을 확인하였다. 그러나 환상공간이 수평상태인 경우 80kW/$m^2$에서 임계열유속이 관찰되었다. 액체 교란의 정도와 기포군집형성이 환상공간 내부 풀비등의 주된 열전달 기구로 이해된다.

Keywords

References

  1. Shoji, M., 2004, "Studies of Boiling Chaos: a Review," Int. J. Heat Mass Transfer, Vol. 47, pp. 1105-1128. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.024
  2. Chun, M. H. and Kang, M. G., 1998, "Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer," ASME, J. of Heat Transfer, Vol. 120, pp. 468-476. https://doi.org/10.1115/1.2824272
  3. van Stralen, S. J. D. and Sluyter, W. M. 1969, "Investigations on the Critical Heat Flux of Pure Liquids and Mixtures under Various Conditions," Int. J. Heat Mass Transfer, Vol. 12, pp. 1353-1384. https://doi.org/10.1016/0017-9310(69)90022-2
  4. Githinji, P. M. and Sabersky, R. H., 1963, "Some Effects of the Orientation of the Heating Surface in Nucleate Boiling'" ASME, J. of Heat Transfer, Vol. 85, p. 379. https://doi.org/10.1115/1.3686129
  5. Nishikawa, K., Fujita, Y., Uchida, S. and Ohta, H., 1984, "Effect of Surface Configuration on Nucleate Boiling Heat Transfer," Int. J. Heat Mass Transfer, Vol. 27, No. 9, pp. 1559-1571. https://doi.org/10.1016/0017-9310(84)90268-0
  6. Lienhard, J. H., 1985, "On the Two Regimes on Nucleate Boiling," ASME J. Heat Transfer, Vol. 107, pp. 262-264. https://doi.org/10.1115/1.3247392
  7. Jung, D. S., Venant, J. E. S., and Sousa, A. C. M., 1987, "Effects of Enhanced Surfaces and Surface Orientations on Nucleate and Film Boiling Heat Transfer in R-11," Int. J. Heat Mass Transfer, Vol. 30, No. 12, pp. 2627-2639. https://doi.org/10.1016/0017-9310(87)90144-X
  8. Fujita, Y., Ohta, H., Uchida, S., and Nishikawa, K., 1988, "Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectabgular Spaces," Int. J. of Heat Mass Transfer, Vol. 31, No. 2, pp. 229-239. https://doi.org/10.1016/0017-9310(88)90004-X
  9. Kang, M. G., 2000, "Effect of Tube Inclination on Pool Boiling Heat Transfer," ASME, J. of Heat Transfer, Vol. 122, Issue 1, pp. 188-192. https://doi.org/10.1115/1.521456
  10. Kang, M. G., 2003, "Effects of Tube Inclination on Pool Boiling Heat Transfer," Nuclear Engineering and Design, Vol. 220, pp. 67-81. https://doi.org/10.1016/S0029-5493(02)00322-9
  11. Kang, M. G., 2008, "Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer," Trans. of the KSME(B), Vol. 32, No. 1, pp.116-124.
  12. Narayan, G. P., Anoop, K. B., Sateesh G. and Das, S. K., 2008, "Effects Surface Orientation on Pool Boiling Heat Transfer on Nanoparticle Suspensions," Int. J. Multiphase Flow, Vol. 34, pp. 145-160. https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.004
  13. Parker, J. L. and El-Genk M. S., 2006, "Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite," ASME J. Heat Transfer, Vol. 128, pp. 1159-1175. https://doi.org/10.1115/1.2352783
  14. Sateesh, G., Das, S. K. and Balakrishnan, A. R., 2009, "Experimental Studies on the Effect of Tube Inclination on Nucleate Pool Boiling," Heat Mass Transfer, Vol. 45, pp. 1493-1502. https://doi.org/10.1007/s00231-009-0522-9
  15. Howard, A. H. and Mudawar, I., 1999, "Orientation Effects on Pool Boiling Critical Heat Flux(CHF) and Modeling of CHF for Near-Vertical Surfaces," Int. J. Heat Mass Transfer, Vol. 42, pp. 1665-1688. https://doi.org/10.1016/S0017-9310(98)00233-6
  16. El-Genk, M. S. and Bostanci H., 2003, "Saturation Boiling of HFE-7100 from a Copper Surface, Simulating a Microelectric Chip," Int. J. Heat Mass Transfer, Vol. 46, pp. 1841-1854. https://doi.org/10.1016/S0017-9310(02)00489-1
  17. Kim, Y. H. and Suh, K. Y., 2003, "Onedimensional Critical Heat Flux Concerning Surface Orientation and Gap Size Effects," Nuclear Engineering and Design, Vol. 226, pp. 277-292. https://doi.org/10.1016/j.nucengdes.2003.07.003
  18. Liu, Z. and Zhang, T., 2004, "Critical Heat Flux during Natural Convection Boiling in Inclined Annular Tubes Submerged in Saturated Liquids," Int. Comm. Heat Mass Transfer, Vol. 31, pp. 169-179. https://doi.org/10.1016/S0735-1933(03)00222-7
  19. Liu, Z., Liao, L., and Zhang, T., 2008, "Critical Heat Flux of Countercurrent Boiling in an Inclined Small Tube with Closed Bottom," Int. Comm. Heat Mass Transfer, Vol. 35, pp. 995-1000. https://doi.org/10.1016/j.icheatmasstransfer.2008.04.014
  20. Misale, M., Guglielmini, G., and Priarone, A., 2009, "HFE-7100 Pool Boiling Heat Transfer and Critical Heat Flux in Inclined Narrow Spaces," Int. J. Refrigeration, Vol. 32, pp. 235-245. https://doi.org/10.1016/j.ijrefrig.2008.06.003
  21. Cornwell, K. and Houston, S. D., 1994, "Nucleate Pool Boiling on Horizontal Tubes: a Convection-Based Correlation," Int. J. Heat Mass Transfer, Vol. 37, Suppl. 1, pp. 303-309.
  22. Kang, M. G., 2008, "Effects of the Inclination Angle on Pool Boiling in an Annulus," Int. J. Heat Mass Transfer, Vol. 51, pp. 5018-5023. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.024
  23. Kang, M. G., 2010, "Pool Boiling Heat Transfer on the Tube Surface in an Inclined Annulus," Int. J. Heat Mass Transfer, Vol. 53, pp. 3326-3334. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.035
  24. Coleman, H. W. and Steele, W. G. 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley&Sons.