DOI QR코드

DOI QR Code

Sequential Approximate Optimization by Dual Method Based on Two-Point Diagonal Quadratic Approximation

이점 대각 이차 근사화 기법을 쌍대기법에 적용한 순차적 근사 최적설계

  • Received : 2010.09.15
  • Accepted : 2011.01.07
  • Published : 2011.03.01

Abstract

We present a new dual sequential approximate optimization (SAO) algorithm called SD-TDQAO (sequential dual two-point diagonal quadratic approximate optimization). This algorithm solves engineering optimization problems with a nonlinear objective and nonlinear inequality constraints. The two-point diagonal quadratic approximation (TDQA) was originally non-convex and inseparable quadratic approximation in the primal design variable space. To use the dual method, SD-TDQAO uses diagonal quadratic explicit separable approximation; this can easily ensure convexity and separability. An important feature is that the second-derivative terms of the quadratic approximation are approximated by TDQA, which uses only information on the function and the derivative values at two consecutive iteration points. The algorithm will be illustrated using mathematical and topological test problems, and its performance will be compared with that of the MMA algorithm.

본 논문에서는 SD-TDQAO (Sequential Dual - Two-point Diagonal Quadratic Approximate Optimization)라는 쌍대기법을 이용한 순차적 최적설계 알고리즘을 제안한다. 이 방법은 비선형 목적함수와 제한조건이 포함되어 있는 공학적인 문제를 효과적으로 풀 수 있도록 하는데 목적이 있다. 기존의 볼록성과 분리성이 만족되지 않는 eTDQA2 방법을 이용하여 쌍대기법에 이용할 수 있도록 이차 근사함수의 헤시언 대각요소에 이를 적용하여 쉽게 볼록성과 분리성을 보장할 수 있도록 하였다. 또한 이를 수학적 예제와 위상 최적설계문제를 통해 기존의 쌍대기법 알고리즘인 MMA 와의 비교로 그 성능을 입증하였다.

Keywords

References

  1. Kim, J.-R. and Choi, D.-H., 2008, “Enhanced Two-Point Diagonal Quadratic Approximation Methods for Design Optimization,” Comput. Methods Appl. Mech. Engng, Vol. 197, pp. 846-856. https://doi.org/10.1016/j.cma.2007.09.014
  2. Kim, M.-S., Kim, J.-R., Jeon, J.-Y. and Choi, D.-H., 2001, “Design Optimization Using Two-Point Diagonal Quadratic Approximation,” Transactions of the Korean Society of Mechanical Engineers, Vol. 25, No. 9, pp. 1423-1431 (in Korean).
  3. Starnes, J.H. Jr. and Haftka, R.T., 1979, “Preliminary Design of Composite Wings for Buckling, Stress and Displacement Constraints,” Journal of Aircraft, Vol. 16, pp. 564-570. https://doi.org/10.2514/3.58565
  4. Fadel, G.M., Riley, M.F. and Barthelemy, J.F.M., 1990, “Two-Point Exponential Approximation Method for Structural Optimization,” Structural Optimization, Vol. 2, No. 2, pp. 117-124. https://doi.org/10.1007/BF01745459
  5. Fleury, C., 1989, “CONLIN: An efficient Dual Optimizer Based on Convex Approximation Concepts,” Structural Optimization, Vol. 1, No. 2, pp. 81-89. https://doi.org/10.1007/BF01637664
  6. Svanberg, K., 1987, “The Method of Moving Asymptotes-A New Method for Structural Optimization,” Int. J. Numer. Meth. Engng, Vol. 24, pp. 359-373. https://doi.org/10.1002/nme.1620240207
  7. Svanberg, K., 1995, “A Globally Convergent Version of MMA Without Linesearch,” Proceedings of the First World Congress on Structural and Multidisciplinary Optimization, Gorslar, Germany, pp. 9-16.
  8. Duysinx, P., Bruyneel, M. and Fleury, C., 2009, “Solution of Large Scale Optimization Problems with Sequential Convex Programming,” Technical Report, LTAS-Department of Aerospace and Mechanical Engineering, Institute of Mechanics and Civil Engineering, University of Liege.
  9. Falk, J. E., 1967, “Lagrange Multipliers and Nonlinear Programming,” J. Math. Anal. Appl., Vol. 19, pp. 141-159. https://doi.org/10.1016/0022-247X(67)90028-5
  10. Sigmund, O., 2001, “A 99 Line Topology Optimization Code Written in Matlab,” Struc. Multidisc Optim., Vol. 21, pp. 120-127. https://doi.org/10.1007/s001580050176
  11. Bendsøe, M.P. and Sigmund, O., 2003, “Topology Optimization: Theory, Methods and Applications,” Springer: Berlin.