DOI QR코드

DOI QR Code

4-point bending test system을 이용한 Cu-Cu 열 압착 접합 특성 평가

Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system

  • 김재원 (한국기계연구원 나노융합기계연구본부) ;
  • 김광섭 (한국기계연구원 나노융합기계연구본부) ;
  • 이학주 (한국기계연구원 나노융합기계연구본부) ;
  • 김희연 (나노종합팹센터 Sa-FPA팀) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 현승민 (한국기계연구원 나노융합기계연구본부)
  • Kim, Jae-Won (Department of Nano-Mechanics, Korea Institute of Machinery & Materials) ;
  • Kim, Kwang-Seop (Department of Nano-Mechanics, Korea Institute of Machinery & Materials) ;
  • Lee, Hak-Joo (Department of Nano-Mechanics, Korea Institute of Machinery & Materials) ;
  • Kim, Hee-Yeon (Sa-FPA Team, National Nanofab Center) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University) ;
  • Hyun, Seung-Min (Department of Nano-Mechanics, Korea Institute of Machinery & Materials)
  • 투고 : 2011.09.09
  • 심사 : 2011.11.23
  • 발행 : 2011.12.30

초록

3차원 칩 적층 접합에 사용하기 위한 Cu-Cu 금속 저온 접합 공정을 위하여 접합 온도 및 플라즈마 표면 전처리에 따른 열 압착 접합을 수행 하였다. 4점굽힘시험과 CCD 카메라를 이용하여 Cu 접합부의 정량적인 계면접착에너지를 평가하였다. 접합 온도 $250^{\circ}C$, $300^{\circ}C$, $350^{\circ}C$에서 각각 $1.38{\pm}1.06$(상한값), $7.91{\pm}0.27$(하한값), $10.36{\pm}1.01$(하한값) $J/m^2$으로 접합온도 $300^{\circ}C$ 이상에서 계면접착에너지 5 $J/m^2$ 이상의 값을 얻었다. 접합 온도 $300^{\circ}C$ 이하 낮은 온도에서 접합하기 위해 Cu-Cu 열 압착 접합 전 Ar+$H_2$ 플라즈마로 $200^{\circ}C$에서 2분간 표면 전처리 후 $250^{\circ}C$ 조건에서 열 압착 접합할 경우 계면접착에너지 값이 $6.59${\pm}0.03$(하한값) $J/m^2$로 표면 전 처리하지 않은 시험편에 비해 접합 특성이 크게 증가 하였다.

The quantitative interfacial adhesion energy of the Cu-Cu direct bonding layers was evaluated in terms of the bonding temperature and Ar+$H_2$ plasma treatment on Cu surface by using a 4-point bending test. The interfacial adhesion energy and bonding quality depend on increased bonding temperature and post-annealing temperature. With increasing bonding temperature from $250^{\circ}C$ to $350^{\circ}C$, the interfacial adhesion energy increase from $1.38{\pm}1.06$ $J/m^2$ to $10.36{\pm}1.01$ $J/m^2$. The Ar+$H_2$ plasma treatment on Cu surface drastically increase the interfacial adhesion energy form $1.38{\pm}1.06$ $J/m^2$ to $6.59{\pm}0.03$ $J/m^2$. The plasma pre-treatment successfully reduces processing temperature of Cu to Cu direct bonding.

키워드

참고문헌

  1. M. S. Yoon, "Introduction of TSV (Through Silicon Via) Technology", J. Microelectron. Packag. Soc., 16(1), 1 (2009).
  2. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun and Y. B. Park, "Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump", J. Kor. Inst. Met. & Mater., 46, 310 (2008).
  3. S. K. Lim, J. W. Choi, Y. H. Kim and T. S. Oh, "Contact Resistance and Thermal Cycling Reliability of the Flip-Chip Joints Processed with Cu-Sn Mushroom Bumps", J. Kor. Inst. Met. & Mater., 46, 585 (2008).
  4. C. M. Oh, N. C. Park, C. W. Han, M. S. Bang and W. S. Hong, "The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles", J. Kor. Inst. Met. & Mater., 47, 500 (2009).
  5. P. Arunasalam, H. D. Ackler and B. G. Sammakia, "Microfabrication of Ultrahigh Density Wafer-level Thin Film Compliant Interconnects for Through-Silicon-Via Based Chip Stacks", J. Vac. Sci. Technol., B24, 1780 (2006).
  6. C. Ryu, J. Park, J. S. Pak, K. Y. Lee, T. S. Oh and J. Kim, "Suppression of Power/Ground Inductive Impedance and Simultaneous Switching Noise Using Silicon Through-Via in a 3-D Stacked Chip Package", IEEE Microwave Wireless Comp. Lett., 17, 855 (2007). https://doi.org/10.1109/LMWC.2007.910485
  7. K. W. Lee, T. S. Oh, J. H. Lee and T. S. Oh, J. Electron. Mater., 36, 123 (2007). https://doi.org/10.1007/s11664-006-0020-5
  8. M. H. Jeong, G. T. Lim, B. J. Kim, K. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps", J. Electron. Mater., 39, 2368 (2010). https://doi.org/10.1007/s11664-010-1345-7
  9. B. Lee, J. Park, S. J. Jeon, K. W. Kwon and H. J. Lee, "A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications", J. Electrochemical Society, 157, H420 (2010). https://doi.org/10.1149/1.3301931
  10. D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York (1994).
  11. B. Lee, J. Park, J. Song, K. W. Kwon and H. J. Lee, "Effects of Bonding Temperature and Pressure on the Electrical Resistance of Cu/Sn/Cu Joints for 3D Integration Applications", J. Electron. Mater., 40, 324 (2010).
  12. E. J. Jang, J. W. Kim, B. Kim, T. Matthias and Y. B. Park, "Annealing Temperature Effect on the Cu-Cu Bonding Energy for 3D-IC Integration", Met. Mater. Int., 17, 105 (2011). https://doi.org/10.1007/s12540-011-0214-0
  13. T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin and E. Andideh. "Interfacial Adhesion of Copper-Low k Interconnects", Proc. the IEEE 2001 International Interconnect Technology Conference, Burlingame, 257, IEEE Electron Devices Society (2001).
  14. R. Tadepalli, "Characterization and Requirements for Cu-Cu Bonds for Three-dimensional Integrated Circuits", in Ph.D. Thesis, Massachuesetts Institute of Technology, Boston (2007).
  15. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, "Adhesion and Debonding of Multi-layer Thin Film Structures", Eng. Fract. Mech., 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  16. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, "A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces", J. Appl. Mech., 111, 77 (1989).
  17. J. W. Kim, K. S. Kim, H. J. Lee, H. Y. Kim, Y. B. Park and S. Hyun, "The Effect of Plasma Pre-cleaning on the Cu-Cu Direct Bonding for 3D Chip Stacking", Proc. 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, 102, IEEE Reliability/ CPMT/ED (2011).
  18. R. Shaviv, S. Roham and P. Woytowitz, "Optimizing the Precision of the Four-point Bend Test for the Measurement of Thin Film Adhesion", Microelectron. Eng., 82, 99 (2005). https://doi.org/10.1016/j.mee.2005.06.006
  19. K. N. Chen, A. Fan, C. S. Tan and R. Reif, "Morphology and Bond Strength of Copper Wafer Bonding", Electrochemical and Solid-State Letters, 7(1), G14 (2004). https://doi.org/10.1149/1.1626994
  20. J. W. Kim, K. S. Kim, S. D. Kim, S. Hyun, H. J. Lee and Y. B. Park, "A Study of Cu Direct Bonding using Wet Chemical Methods", Proc. J. Microelectron. Packag. Soc.(Fall Meeting), 63, Seoul, IMAPS-Korea (2010).
  21. P. J. Soininen, K. -E. Elers, V. Saanila, S. Kaipio, T. Sajavaara and S. Haukka, "Reduction of Copper Oxide Film to Elemental Copper", J. Electrochem. Soc., 152, G122 (2005). https://doi.org/10.1149/1.1839491
  22. K. N. Chen, S. M. Chang, L. C. Shen and R. Reif, "Investigations of Strength of Copper-bonded Wafers with Several Quantitative and Qualitative Tests", J. Electron. Mat., 35, 1082 (2006). https://doi.org/10.1007/BF02692570

피인용 문헌

  1. Cu-SiO2 하이브리드 본딩 vol.27, pp.1, 2011, https://doi.org/10.6117/kmeps.2020.27.1.0017