DOI QR코드

DOI QR Code

Energy production from organic waste by anaerobic treatment (I) : Hydrogen production from food waste

혐기성 처리에 의한 유기성 폐기물 에너지화 (I) : 음식폐기물의 수소화

  • Han, Sun-Kee (Department of Environmental and Health, Korea National Open University)
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2011.03.10
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

Characteristics of hydrogen production from various food wastes in anaerobic batch reactors were evaluated to assess the energy potential of organic wastes. Organic wastes which were used in this study were scallion as vegetable, apple as fruit, rice as grain and pork as meat. Ultimate hydrogen yield of scallion, apple, rice and pork were 0.46, 0.47, 0.62 and $0.05mol\;H_2/mol\;hexose$, respectively. On the other hand, hydrogen production rates of scallion, apple, rice and pork were 0.013, 0.021, 0.014 and $0.005mol\;H_2/mol\;hexose/h$, respectively. These results indicated that anaerobic hydrogen fermentation from food waste except for meat was effective in removing organic material as well as producing renewable energy. Volatile fatty acids increased as hydraulic retention time was increased. In the hydrogen fermentation, acidification degree of rice was measured as the highest rate of 75.8% whereas pork was found as the lowest rate of 35.2%.

혐기성 회분식 반응조를 이용하여 다양한 유기성 폐기물의 에너지화 가능성을 평가하기 위하여 수소발생 특성을 평가하였다. 본 연구에서 채소류는 파, 과일류는 사과, 곡류는 쌀밥 그리고 육류로는 돼지고기를 사용하였다. 파, 사과, 쌀밥 및 돼지고기의 최종 수소 수율은 각각 0.46, 0.47, 0.62 및 $0.05mol\;H_2/mol\;hexose$로 나타났다. 수소 발생율은 파, 사과, 쌀밥 및 돼지고기에서 각각 0.013, 0.021, 0.014 및 $0.005mol\;H_2/mol\;hexose/h$로 평가되었다. 따라서 돼지고기를 제외한 음식폐기물의 혐기성 수소 발효는 재생에너지 생산뿐만 아니라, 유기물의 제거에 효과적인 것으로 나타났다. 휘발성 지방산은 수리학적 체류시간이 증가함에 따라 높게 발생되는 것으로 나타났다. 수소 발효시 산발효 효율은 쌀밥이 75.8%로 가장 높게 나타났으며, 돼지고기는 35.2%로 가장 낮게 나타났다.

Keywords

References

  1. 배재호, 유만식, 류돈식, 이종규, 김창균, 폐기물자원화, 1판, 동화기술, pp. 69-70 (2010).
  2. 환경부, 2009년 전국 폐기물 발생 및 처리현황, pp. 8-12 (2010).
  3. 유기영, 주방용오물분쇄기 도입여건과 시범사업 방안, 서울시정개발원, pp. 6 (2007).
  4. 신항식, "음식물쓰레기의 혐기성소화 처리", 유기성자원학회지, 8(2), pp. 7-13 (2000).
  5. Kim, S. H., and Shin, H. S., "Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste", Int. J. Hydrogen Energ., 33, pp. 5266-5277 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.010
  6. Samir, K. K., Anaerobic Biotechnology for Bioenergy Production, Wiley-Blackwell, pp. 2-3 (2008).
  7. 지식경제부, 신재생에너지 백서, pp. 317-318 (2008).
  8. 한선기, 신항식, 김상현, 김현우, "음식물쓰레기의 구성성분에 따른 산발효조의 거동특성", 유기성자원학회지, 10(2), pp. 65-70 (2002).
  9. Okamoto, M., Miyahara, T., Mizuno O., and Noike T., "Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes", Water Science and Techn., 41(3), pp. 25-32 (2000).
  10. Lay, J. J., "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotehnology Bioengineering, 68, pp. 280-287 (2000).
  11. Shin, H. S., Youn J. H., and Kim, S. H., "Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis", Int. J. Hydrogen Energ., 29, pp. 1355-1363 (2004). https://doi.org/10.1016/j.ijhydene.2003.09.011
  12. Pan, J., Zhang, R., El-Mashad, H. M., Sun, H., and Ying, Y., "Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation", Int. J. Hydrogen Energ., 33, pp. 6968-6975 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.130
  13. Van, G. S., Sung, S., and Lay, J. J., "Biohydrogen production as a function of pH and substrate concentration", Environ. Sci. Technol., 35, pp. 4726-4730 (2001). https://doi.org/10.1021/es001979r
  14. Alkaya, E., and Demirer, G. D., "Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters", Biomass and Bioenergy, 35, pp. 32-39 (2011). https://doi.org/10.1016/j.biombioe.2010.08.002
  15. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th edition, Am. Public Health Assoc., Washington, D. C., USA (1992).
  16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., "Colormetric method for determination of sugars and related substances", Anal, Chem., 28(3), pp. 350-356 (1956). https://doi.org/10.1021/ac60111a017
  17. Chen, W. H., Sung, S., and Chen, S. Y., "Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects", Int. J. Hydrogen Energ., 34, pp. 227-234 (2009). https://doi.org/10.1016/j.ijhydene.2008.09.061
  18. Shin, H. S., Youn, J. H., and Kim, S. H., "Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis", Int. J. Hydrogen Energ., 29, pp. 1355-1363 (2004) https://doi.org/10.1016/j.ijhydene.2003.09.011
  19. Shin, H. S., Kim D. H., Kim, S. H., and Kim K. Y., "Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste", Int. J. Hydrogen Energ., 35, pp. 1590-1594 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.041
  20. Lay, J. J., Fan, K. S., Chang, J. L., and K, C. H., "Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge", Int. J. Hydrogen Energ., 28, pp. 1361-1367 (2003). https://doi.org/10.1016/S0360-3199(03)00027-2