• Title/Summary/Keyword: 최종 수소 수율

Search Result 20, Processing Time 0.024 seconds

Steam gasification characteristics of oregon pine wood pellet (우드 펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Choi, Sun-Yong;Lee, Moon-won;Kim, Lae-Hyun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.192-192
    • /
    • 2010
  • 현재 산업과 과학의 발달로 인한 무분별한 화석연료의 사용은 에너지자원의 고갈과 환경오염의 문제를 야기시켜, 이의 해결을 위한 청정 신에너지에 대한 연구가 전 세계적으로 집중되고 있다. 이 중 바이오매스는 화석연료보다 비교적 높은 H/C 비를 갖기 때문에 신에너지인 수소 또는 Syngas를 생산하기 위한 가스화 특성이 우수한 특징을 가지고 있으며, 구성성분 내 중금속, 황, 질소를 거의 함유하지 않는 점에서 환경오염 저감과 동시에 대체 신에너지로써 각광을 받고 있다. 이에 본 연구에서는 목질계 바이오매스인 Wood pellet (미송)에 대하여 고정층 반응기를 이용하여 질소분위기하에서 온도 및 Steam/Biomass Ratio(이하 SBR) 조건에 따른 가스화 특성으로 고찰하는데 그 목적을 둔다. 온도의 영향에 대하여, 높은 온도 범위에서 수소 수율이 증가함을 알 수 있었다. SBR에 대한 영향으로서, 저온 (700, $800^{\circ}C$)에서는 SBR=1에서는 수소의 수율이 증가하였으나 SBR=2, 3에서 감소하는 것을 보였다. 하지만 $900^{\circ}C$에서는 SBR이 증가 할수록 수소의 수율이 증가하는 것으로 나타났다. 또한 볼륨비로 나타내었을 경우 $H_2/CO(vol/vol)$의 경우 $900^{\circ}C$, SBR=3에서 0.73%로 water gas shift reaction이 가장 잘 일어난 것을 확인했고, $H_2/CH_4(vol/vol)$의 경우 마찬가지로 위의 조건과 동일조건에서 2.59%로 steam reforming이 가장 잘 일어난 것을 확인할 수 있었다. 최종적으로 본 실험에서는 $900^{\circ}C$, SBR=3인 경우에 가장 높은 수소수율을 얻을 수 있으며, 이때 수소의 수율은 32.7 Vol%였다.

  • PDF

Energy production from organic waste by anaerobic treatment (I) : Hydrogen production from food waste (혐기성 처리에 의한 유기성 폐기물 에너지화 (I) : 음식폐기물의 수소화)

  • Han, Sun-Kee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • Characteristics of hydrogen production from various food wastes in anaerobic batch reactors were evaluated to assess the energy potential of organic wastes. Organic wastes which were used in this study were scallion as vegetable, apple as fruit, rice as grain and pork as meat. Ultimate hydrogen yield of scallion, apple, rice and pork were 0.46, 0.47, 0.62 and $0.05mol\;H_2/mol\;hexose$, respectively. On the other hand, hydrogen production rates of scallion, apple, rice and pork were 0.013, 0.021, 0.014 and $0.005mol\;H_2/mol\;hexose/h$, respectively. These results indicated that anaerobic hydrogen fermentation from food waste except for meat was effective in removing organic material as well as producing renewable energy. Volatile fatty acids increased as hydraulic retention time was increased. In the hydrogen fermentation, acidification degree of rice was measured as the highest rate of 75.8% whereas pork was found as the lowest rate of 35.2%.

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes (전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산)

  • Lee, Chae-Young;Na, Dong-Chae;Choi, Jae-Min;Kang, Doo-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

The effect of Fe on the $Ni_x-Fe_{1-x}/Al_2O_3$catalysts for $CO_2$ methanation of SNG process ($Ni_x-Fe_{1-x}/Al_2O_3$계 촉매의 함량이 $CO_2$ 메탄화반응에 미치는 영향)

  • Kang, Sukhwan;Ryu, Jaehong;Kim, Jinho;Lee, Sunki;Yoo, Youngdon;Byun, Changdae;Lim, Hyojun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.117-117
    • /
    • 2010
  • 석탄 가스화에서 유도된 합성가스는 합성반응 공정을 통하여 합성석유, 메탄올(& DME), 합성천연가스(SNG) 등의 다양한 화학원료를 제조할 수 있어 이의 활용이 점차적으로 확대될 것이다. 이 중 SNG 공정의 경우, 석탄가스화기에서 생산된 합성가스는 집진, 탈황, 수성가스전환($H_2$/CO 비를 조절), $CO_2$ 제거 등의 공정을 거쳐 메탄화 반응기로 유도되는데, 메탄화 반응에서 $CO_2$가 반응에 참여하면 탄소포집 및 저장(CCS)의 부담을 크게 줄일 수 있어 이에 대한 관심이 커지고 있다. 특히, 상업용으로 활용되고 있는 단열반응기를 직렬로 연결할 경우, 메탄화반응의 발열로 인한 반응기내의 온도 상승으로 $CO_2$가 생성되는데 이후의 2차 또는 3차의 단열반응기에서 $CO_2$ 수소화반응이 진행되면 최종 생성물인 메탄의 수율이 증가하며, 뿐만아니라 생성물 중 포함된 수소의 농도를 낮출 수 있는 장점을 가지게 된다. 따라서, 본 연구에서는 Ni계 촉매를 사용하여 풍부한 $H_2$ 분위기에서 Fe를 첨가하여 이의 함량이 $CO_2$ 수소화반응의 탄소 전환율과 생성되는 메탄의 수율에 미치는 영향을 고찰하였다.

  • PDF

Water Gas Shift reaction research of the synthesis gas for a hydrogen yield increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.840-843
    • /
    • 2009
  • 폐자동차의 최종처분 과정에서 발생하는 자동차 파쇄 폐기물(Automobile Shredder Dust)은 대부분이 고분자 화합물로 높은 발열량을 가지고 있다. 또한 할로겐족 원소가 포함된 난연성 고분자류가 많아 다이옥신의 생성 우려가 높은 고분자류와 다이옥신 생성의 촉매 역할을 할 수 있는 금속성분이 많이 함유되어 있어 가스화용융시스템에 적용하여 처리하기에 매우 적합한 폐기물이다. 본 연구에서는 ASR의 가스화 용융 시설에서 고농도 CO를 함유한 합성가스를 수성가스전환반응(Water Gas Shift reaction, WGS)을 이용하여 수소의 수율을 높이는 기술을 제시하였다. 가스화 용융 설비에서 배출되는 합성가스 조성을 기준으로 적합한 고정층 WGS 반응기를 설계하고, 고온 촉매(KATALCO 71-5M)와 저온 촉매(KATALCO 83-3X)를 사용하여 실험하였다. 수성가스 반응 후의 가스 조성은 온도가 상승할수록 일산화탄소가 줄어들고 이에 따라 수소와 이산화탄소 발생량이 증가 되어 고온 촉매를 사용했을 경우 일산화탄소 전환율 ($1-CO_{out}/CO_{in}$)은 55.6에서 95.8%까지 상승하였다. 동일한 온도조건에서는 촉매에 관계없이 $CO/H_2$가 감소할수록 전환율도 감소하는 경향을 보였지만 동일한 합성가스 조성에서 일산화탄소 전환율을 비교하면 저온 촉매가 고온 촉매보다 매우 우수함을 알 수 있었다.

  • PDF

Study on Efficient Carbonizing Conditions When Carbonizing Fish Offal (어류폐기물의 탄화처리시 효율적 탄화조건에 관한 연구)

  • Jeong, Byung Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • Experiments on carbonization were conducted using fish offal generated from fish market for the purpose of resource recycling. Elemental composition of fish offal and effect of carbonation temperature on the overall yield were investigated. Carbon and hydrogen contents of fish offal were 51.1% and 7.6%, respectively in view of elemental composition. Particularly, nitrogen and sulfur contents were as high as 9.8% and 1.0%, respectively. These values suggests that odor problem of fish offal can be serious. Comparing elemental composition of fish offal with other waste materials, it is thought that carbon and hydrogen contents are considerably high. These implies that thermal disposal will be the best option for final disposal method of fish offal. As a results of carbonization experiments on Mackerel, Hairtail, Croaker and mixed sample of Mackerel, Hairtail and Croaker, carbonization patterns were quite similar irrespective of fish species. Carbonization yield was varied significantly depending on carbonization temperature at the carbonization time of 5 minutes and 10 minutes. When the carbonization time was maintained longer than 30 minutes, yield variation depending on time variation at each temperature was insignificant. Thus, it can be concluded that effect of carbonization time on overall yield was minor when the carbonization time was maintained longer than 30 minutes. Primary vaporization in carbonization conducted at the temperature of $400^{\circ}C$ was minor. Thus, difference of yield between temperature of $500^{\circ}C$ and $400^{\circ}C$ was appeared greatly. It can be concluded that yield difference depending on carbonization temperature can be neglected if the carbonizing temperature exceed $600^{\circ}C$ and carbonizing time exceed 10 minutes at the same time.

Solvent Extraction of Preservative Components from CCA Treated Wood (CCA 처리재로부터 방부제 유효성분의 용제추출)

  • Kim, Gyu-Hyeok;Kong, Il-Gon;Ra, Jong-Bum;Cho, Jae-Sung;Kim, Jae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.50-56
    • /
    • 2003
  • This research was performed to select an appropriate agent to extract preservative components from CCA-treated wood, and then to evaluate the effect of reagent concentration, extracting temperature, and extracting time on the removal of chrome, copper, and arsenic from treated wood. Hydrogen peroxide was selected as the best extracting agent when considered extraction yield as well as use and environmental safety. Its extraction yield was dependent on extracting variables (temperature, concentration, and time), and a highly significant interaction existed among variables. It should be possible to optimize extraction by manipulating these extracting variables. The results may suggest that the required temperature conditions for the reasonable removal of CCA components are at least above 40℃ because extracting time is too long at low temperature (20℃). Reagent concentrations for extracting at above 40℃ should be decided by considering the extracting time.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

Inhibitory Effects of Copper on the Anaerobic Degradation of Propionate (프로피온산의 혐기성 분해시 구리의 저해 효과)

  • Shin, Hang-sik;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 1999
  • The effects of copper on the anaerobic degradation of propionate were studied using anaerobic batch reactors. The apparent inhibitory effects of copper on the anaerobic degradation of propionate could be observed from behaviors of intermediates, ultimate methane yield(UMY) and specific methanogenic activity(SMA) There was little inhibition at the concentration of $2.5mg\;Cu^{2+}/L$. Beyond this concentration, the inhibitory effects increased with increasing dose of coppers. The 50% inhibition of UMY and SMA occurred at copper dosage of 33.8 and $24.1mg\;Cu^{2+}/gVSS$, respectively. The inhibitory effect based on the UMY was gradually reduced with the operation time dueprobably to the acclimation of microorganisms and/or binding of the added copper by ligands(and possibly ion exchange sites)contained on the cell membrane and extracellular polymer matrix whereas it based on the SMA might exclude the this phenomena. Therefore, the methodology for interpretation of inhibition data based on the SMA was more accurated than the UMY. There was no inhibitory effect in batch reactors supplemented with sulfate due to an antagonistic action of the sulfate reducing bacteria. Propionate degradation was initially retarded for copper inhibited samples but it gradually degraded afterward. Based on the mass removal considering take into account the propionate to acetate conversion, propionate degradation may appeal more affected than acetate. This result revealed that the hydrogenotrophic methanogens were the most affected by copper.

  • PDF

Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde (메타아크릴 알데히드의 선택적 수소화에서 2가 알코올의 이합체 형성 부반응 억제효과)

  • Kook-Seung Shin;Mi-Sun Cha;Kyoung-Ku Kang;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2023
  • The homogeneous catalyst, Ru-MACHO-BH, selectively performs hydrogenation reactions only on the carbonyl group of α, β-unsaturated aldehyde compounds with extremely high reactivity and selectivity. However, the hydrogenation of α, β-unsaturated aldehydes involves a heterogeneous Diels-Alder reaction, resulting in the formation of significant amounts of byproducts, such as dimers. In this study, we used the Ru-MACHO-BH catalyst (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) to selectively hydrogenate the carbonyl group of a specific type of α, β-unsaturated aldehyde called methacryl aldehyde, leading to the synthesis of methallyl alcohol. Simultaneously, we applied diols to inhibit the formation of byproducts. The results demonstrate that monoethylene glycol can significantly reduce the formation of diols. Based on these results, we effectively suppressed the formation of dimers containing vinyl groups in methacryl aldehyde by using hydroquinone, which can efficiently inhibit the chemical interaction of vinyl groups. Consequently, the conversion rate of methacryl aldehyde was increased. Ultimately, by reducing the amount of the expensive homogeneous catalyst Ru-MACHO-BH to 1/10, we achieved a selectivity of over 90% and a yield of over 80% for the desired product, methallyl alcohol. These results provide a method to minimize yield reduction while reducing the usage of expensive catalysts, thereby improving cost-effectiveness. We expect that the reaction could be applied to various kinds of selective hydrogenation and has been successfully run on an industrial scale.