• Title/Summary/Keyword: Granite screenings

Search Result 3, Processing Time 0.016 seconds

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.

Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity (열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발)

  • Kim, Daehong;Oh, Gidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials to be maintained at a low thermal resistivity during the service period. Temperatures greater than $50^{\circ}C$ to $60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. The results of Dong-rim river sand (relatively uniform) show that as water content level increases, thermal resistivity tends to decrease, whereas the thermal resistivity on dry condition is very high value($260^{\circ}C-cm/watt$). In addition, other materials(such as Jinsan granite screenings, A-2(sand and gravel mixture), E-1(rubble and granite screenings mixture) and SGFC(sand, gravel, fly-ash and cement mixture)) are well-graded materials with low thermal resistivity($100^{\circ}C-cm/watt$ when dry). Based on this research, 4 types of improved materials were suggested as the environmentally friendly backfill materials with low thermal resistivity.

Thermal Resistivity of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 열저항 특성)

  • 김대홍;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.209-220
    • /
    • 2002
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials that can maintain a low thermal resistivity (less than 5$0^{\circ}C$-cm/watt) even while they are subjected to high temperatures for prolonged periods. Temperatures greater than 5$0^{\circ}C$ to 6$0^{\circ}C$ may lead to breakdown of cable insulation and thermal nlnaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aiming at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were called out for DonUing river sand, a relatively uniffrm sand of very high thermal resistivity (5$0^{\circ}C$ -cnuwatt at 10% water content, 26$0^{\circ}C$-cm/watt when dry), and Jinsan granite screenings, and A-2(sand and gravel mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity (about 35$^{\circ}C$ -cm/watt when at 10 percent water content, 10$0^{\circ}C$-cm/watt when dry). Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity.