DOI QR코드

DOI QR Code

Synthesis of TiO2 Hollow Microspheres Using Ionic Liquids

이온성액체를 이용한 이산화티타늄 미세중공체 합성

  • Hong, Kiwon (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kyesang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 홍기원 (서울과학기술대학교 화학공학과) ;
  • 유계상 (서울과학기술대학교 화학공학과)
  • Received : 2011.03.23
  • Accepted : 2011.04.08
  • Published : 2011.06.10

Abstract

$TiO_2$ hollow microsphere was simply synthesized using various ionic liquids. Shapes and sizes of hollow microspheres were significantly different with the composition of ionic liquids. This is mainly attributed to the interaction between the organic solvent and the ionic liquid at the interface leading to the formation of micropsphere. Among the ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate was the most effective to synthesize the hollow microsphere.

다양한 종류의 이온성액체를 사용하여 미세중공체 이산화티타늄 입자를 제조하였다. 이온성액체의 종류에 따라 제조된 이산화티타늄 입자는 다양한 크기와 모양을 형성하였다. 이는 이온성액체와 유기용매 계면 사이에서 형성되는 이산화티타늄이 두 물질 사이의 상호작용에 의해 모양 형성에 영향을 받기 때문이다. 여러 가지 이온성액체 중에서 미세중공체를 제조하는데 있어서 가장 효과적인 이온성액체는 1-Butyl-3-methylimidazolium tetrafluoroborate였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo (1999).
  2. L. Jakob, E. Oliveros, O. Legrini, and A. M. Braun, Photocatalytic Purification and Treatment of Water and Air, ed. F. D. Ollis and H. Al-Ekabi, 511, Elsevier Science, Amsterdam (1993).
  3. J. Grzechulska, M. Hamerski, and A. W. Morawski, Water Res., 34, 1638 (2000). https://doi.org/10.1016/S0043-1354(99)00275-4
  4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  5. F. Caruso, Chem. Eur. J., 6, 206 (2000).
  6. Z. Zhong, Y. Yin, B. Gates, and Y. Xia, Adv. Mater., 12, 206 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
  7. Y. S. Park, H. K. Shin, and J. W. Woo, J. Korean Ind. Eng. Chem., 15, 65 (2004).
  8. F. Caruso, R. A. Caruso, and H. Mohwald, Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  9. Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker, Nature, 398, 223 (1999). https://doi.org/10.1038/18410
  10. P. J. Bruinsma, A. Y. Kim, J. Liu, and S. Baskaran, Chem. Mater., 9, 2507 (1997). https://doi.org/10.1021/cm970282a
  11. B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Battes, D. E. Discher, and D. A. Hammer, Science, 284, 1143 (1999). https://doi.org/10.1126/science.284.5417.1143
  12. V. D. Gordon, X. Chen, J. W. Hutchinson, A. R. Bausch, M. Marquez, and D. A. Weitz, J. Am. Chem. Soc., 126, 14117 (2004). https://doi.org/10.1021/ja0474749
  13. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, Chem. Mater., 18, 614 (2006). https://doi.org/10.1021/cm0512979
  14. J. H. Park, C. Oh, S. I. Shin, S. K. Moon, and S. G. Oh, J. Coll. Inter. Sci., 266, 107 (2003). https://doi.org/10.1016/S0021-9797(03)00645-3
  15. I. Park, S. H. Ko, Y. S. An, K. H. Choi, H. Chun, S. Lee, and G. Kim, J. Nanosci. Nanotechnol., 9, 7224 (2009).
  16. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  17. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  18. T. Nakashima and N. Kimizuka, J. Am. Chem. Soc., 125, 6386 (2003). https://doi.org/10.1021/ja034954b
  19. M. Zhao, L. Zheng, N. Li, and L. Yu, Mater. Lett., 62, 4591 (2008). https://doi.org/10.1016/j.matlet.2008.08.047
  20. X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, and L. Chen, Mater. Sci. Eng. B., 158, 40 (2009). https://doi.org/10.1016/j.mseb.2008.12.036