Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.340

Synthesis of TiO2 Hollow Microspheres Using Ionic Liquids  

Hong, Kiwon (Department of Chemical Engineering, Seoul National University of Science & Technology)
Yoo, Kyesang (Department of Chemical Engineering, Seoul National University of Science & Technology)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 340-342 More about this Journal
Abstract
$TiO_2$ hollow microsphere was simply synthesized using various ionic liquids. Shapes and sizes of hollow microspheres were significantly different with the composition of ionic liquids. This is mainly attributed to the interaction between the organic solvent and the ionic liquid at the interface leading to the formation of micropsphere. Among the ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate was the most effective to synthesize the hollow microsphere.
Keywords
hollow microspheres; $TiO_2$; ionic liquids;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo (1999).
2 L. Jakob, E. Oliveros, O. Legrini, and A. M. Braun, Photocatalytic Purification and Treatment of Water and Air, ed. F. D. Ollis and H. Al-Ekabi, 511, Elsevier Science, Amsterdam (1993).
3 J. Grzechulska, M. Hamerski, and A. W. Morawski, Water Res., 34, 1638 (2000).   DOI   ScienceOn
4 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI   ScienceOn
5 F. Caruso, Chem. Eur. J., 6, 206 (2000).
6 Z. Zhong, Y. Yin, B. Gates, and Y. Xia, Adv. Mater., 12, 206 (2000).   DOI   ScienceOn
7 Y. S. Park, H. K. Shin, and J. W. Woo, J. Korean Ind. Eng. Chem., 15, 65 (2004).
8 F. Caruso, R. A. Caruso, and H. Mohwald, Science, 282, 1111 (1998).   DOI   ScienceOn
9 Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker, Nature, 398, 223 (1999).   DOI   ScienceOn
10 P. J. Bruinsma, A. Y. Kim, J. Liu, and S. Baskaran, Chem. Mater., 9, 2507 (1997).   DOI   ScienceOn
11 B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Battes, D. E. Discher, and D. A. Hammer, Science, 284, 1143 (1999).   DOI   ScienceOn
12 V. D. Gordon, X. Chen, J. W. Hutchinson, A. R. Bausch, M. Marquez, and D. A. Weitz, J. Am. Chem. Soc., 126, 14117 (2004).   DOI   ScienceOn
13 D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, Chem. Mater., 18, 614 (2006).   DOI   ScienceOn
14 J. H. Park, C. Oh, S. I. Shin, S. K. Moon, and S. G. Oh, J. Coll. Inter. Sci., 266, 107 (2003).   DOI   ScienceOn
15 I. Park, S. H. Ko, Y. S. An, K. H. Choi, H. Chun, S. Lee, and G. Kim, J. Nanosci. Nanotechnol., 9, 7224 (2009).
16 P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
17 T. Welton, Chem. Rev., 99, 2071 (1999).   DOI   ScienceOn
18 T. Nakashima and N. Kimizuka, J. Am. Chem. Soc., 125, 6386 (2003).   DOI   ScienceOn
19 M. Zhao, L. Zheng, N. Li, and L. Yu, Mater. Lett., 62, 4591 (2008).   DOI   ScienceOn
20 X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, and L. Chen, Mater. Sci. Eng. B., 158, 40 (2009).   DOI   ScienceOn