DOI QR코드

DOI QR Code

수직원형관에서 초임계압 CO2의 열전달 특성

Heat Transfer Characteristics of CO2 at Supercritical Pressure in a Vertical Circular Tube

  • 투고 : 2010.05.19
  • 심사 : 2010.11.01
  • 발행 : 2011.01.01

초록

원자로의 안전을 확보하고 운전성능을 정확히 예측하기 위해서는 핵연료에서 초임계압 냉각재로 전달되는 열전달량을 예측하는 것이 매우 중요하다. 초임계압 유체에서 열전달은 유사임계온도 부근에서 급격하게 변화하는 물성의 영향을 크게 받아 열전달량이 증가하기도 하고, 특정한 질량유속과 열유속 조건에서는 열전달량이 감소하는 현상을 보이기도 한다. 본 연구에서는 초임계압수냉각로(SCWR)의 핵연료집합체 부수로의 수력 직경과 유사한 내경 4.57 mm 원형관 안에서 상 하향 방향으로 흐르는 $CO_2$로 전달되는 열전달량(실제로는 원형관 외벽온도)을 다양한 조건에서 측정하고 분석하였다. 총 7,250개의 실험결과를 기존의 초임계압 강제대류 상관식들로 예측한 결과와 비교하여 그 상관식들의 정확성을 검토하였으며, 부력매개변수 $\overline{Gr}_b/(Re^{2.7}_b\overline{Pr}^{0.5}_b})$를 도입하여 혼합대류 영역에서도 적용할 수 있도록 기존의 상관식을 확장하였다. 그리고 기존의 열전달열화 발생 조건을 본 실험의 열전달열화 조건과 비교하여 적용성을 평가하였다.

At supercritical pressure, the physical properties of fluid change substantially and the heat transfer at a temperature similar to the critical or pseudo-critical temperature improves considerably; however, the heat transfer may deteriorate due to a sudden increase in the wall temperature at a certain condition of a mass and heat flux. In this study, the heat transfer rates in $CO_2$ flowing vertically upward and downward in a circular tube with a diameter of 4.57 mm under various conditions were calculated by measuring the temperature of the outer wall of the tube. The published heat transfer correlations were analyzed by comparing their prediction values with 7,250 experimental data. By introducing a buoyancy parameter, a heat transfer correlation, which could be applied only to a normal heat transfer regime, was extended such that it can be applied to regime of heat transfer deterioration. The published criteria for heat transfer deterioration were evaluated against the conditions obtained from the experiment in this study.

키워드

참고문헌

  1. Bae, Y.Y., Jang, J., Kim, H.Y., Yoon, H.Y., Kang, H.O. and Bae, K.M., 2007, “Research Activities on a Supercritical Pressure Water Reactor in Korea,” Nuclear Engineering & Technology, Vol. 39, No. 4, pp. 273-186. https://doi.org/10.5516/NET.2007.39.4.273
  2. Kamei K., Yamaji A., Ishiwatari Y., Jie L. and Oka Y., 2005, “Fuel and Core Design of Super LWR with Stainless Steel Cladding,” Proc. ICAPP 05, Seoul, Korea, May 15-19, Paper 5527.
  3. Schulenberg, T. and Starflinger, J., 2008, “Three Pass Core Design Proposal for a High Performance Light Water Reactor,” Progress in Nuclear Energy, Vol 50, pp. 526-531. https://doi.org/10.1016/j.pnucene.2007.11.038
  4. Incropera, F. P., Dweitt, D. P., Bergman, T. L. and Lavine, A. D., 2007, “Introduction to Heat Transfer,” 5th Ed., John & Wiley & Sons.
  5. Kurganov, V. A. and Kaptil’ny, A. G., 1992, “Velocity and Enthalpy Fields and Eddy Diffusivities in a Heated Supercritical Fluid Flow,” Experimental Thermal and Fluid Science,Vol. 5, pp. 465-478. https://doi.org/10.1016/0894-1777(92)90033-2
  6. Bishop, A. A., Sandberg, R. O. and Tong, L. S., 1965, "Forced Convection Heat Transfer to Water at Near-Critical Temperature and Supercritical Pressures," AIChE, I. Chemical Engineering Symposium Series, No. 2, London, Institute of Chemical Engineers.
  7. Watts, M. J. and Chou, C. T., 1982, "Mixed Convection Heat Transfer to Supercritical Pressure Water," Proceedings of the 7th International Heat Transfer Conference, Vol. 3, Munchen, Germany, Paper 6-10, pp. 495-500.
  8. Jackson, J. D. and Hall, W. B., 1979, “Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Condition,” Turbulent Forced Convection in Channels and Bundles, Vol.2, Hemisphere, pp. 613-640 .
  9. Styrikovich, M. A., Margulova, T. Kh. and Miropol’skii, Z. L., 1967, “Current Problems in Designing Supercritical Boilers,” Teploenergetika, No. 6, pp. 4-7.
  10. Yamagata, K., Nishikava, K., Fujii, T. and Yoshida, S., 1972, “Forced Convection Heat Transfer to Supercritical Water Flowing in Tubes,” Int. J. Heat Mass Transfer, Vol. 15, pp. 2575-2593. https://doi.org/10.1016/0017-9310(72)90148-2
  11. Kim, J. K., Jeon, H. K., Yoo, J. Y. and Lee J. S., 2005b, “Experimental Study on Heat Transfer Characteristics of Turbulent Supercritical Flow in Vertical Circular/Non-Circular Tubes,” Proceedings of the International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11), October 2-6, 10, Avignon, France.
  12. Grabezhnaya, V. A. and Kirillov, P. L., 2006, “Heat Transfer under Supercritical Pressures and Heat Transfer Deterioration Boundaries,” Thermal Engineering, Vol. 53, No. 4, pp. 296-301. https://doi.org/10.1134/S0040601506040069