DOI QR코드

DOI QR Code

ZnO 기반 박막트랜지스터의 기계적 안정성 확보에 관한 연구

Study on Design of ZnO-Based Thin-Film Transistors With Optimal Mechanical Stability

  • 이덕규 (성균관대학교 기계공학부) ;
  • 박경애 (성균관대학교 신소재공학부) ;
  • 안종현 (성균관대학교 신소재공학부) ;
  • 이내응 (성균관대학교 신소재공학부) ;
  • 김윤제 (성균관대학교 기계공학부)
  • Lee, Deok-Kyu (School of Mechanical Engineering, Sungkyunkwan Univ.) ;
  • Park, Kyung-Yea (School of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Ahn, Jong-Hyun (School of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Lee, Nae-Eung (School of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Kim, Youn-Jea (School of Mechanical Engineering, Sungkyunkwan Univ.)
  • 투고 : 2010.05.26
  • 심사 : 2010.10.25
  • 발행 : 2011.01.01

초록

실험을 통해 구현한 ZnO 기반의 투명 박막트랜지스터의 기계적 특성을 분석하고 안정성에 대한 확보방안을 제시하기 위해 FEM (Finite Element Method)을 이용하여 소자를 구성하는 브릿지 와 패드 부분에 대한 구조해석을 실시하였다. 소자의 유연성 확보를 위해 설계된 브릿지 부분의 웨이브 패턴을 구현한 결과 실험 값 대비 최대 진폭의 크기가 오차 0.5%로 실험값과 유사한 신뢰성 있는 결과 값을 얻어낼 수 있었다. 이러한 결과를 바탕으로 브릿지와 패드 사이에 나타나는 압축 응력을 확인하였으며, 압축 응력 값을 패드에 적용하여 그 변형 정도를 분석하였다. 기계적으로 안정성을 갖는 소자를 설계하기 위해 $SiO_2$ 절연층위의 ITO 전극과 ZnO 활성 층의 위치 및 크기를 예측 하였으며, SU-8 코팅 두께를 조절함으로써 중성 역학 층 (Neutral Mechanical Plane)의 위치와 구조적 타당성에 대하여 분석하였다.

ZnO-based thin-film transistors (TFTs) have been fabricated and the mechanical characteristics of electric circuits, such as stress, strain, and deformation are analyzed by the finite element method (FEM). In this study, a mechanical-stability design guide for such systems is proposed; this design takes into account the stress and deformation of the bridge to estimate the stress distribution in an $SiO_2$ film with 0 to 5% stretched on 0.5-${\mu}m$-thick. The predicted buckle amplitude of $SiO_2$ bridges agrees well with experimental results within 0.5% error. The stress and strain at the contact point between bridges and a pad were measured in a previous structural analysis. These structural analysis suggest that the numerical measurement of deformation, SU-8 coating thickness for Neutral Mechanical Plane (NMP) and ITO electrode size on a dielectric layer was useful in enhancing the structural and electrical stabilities.

키워드

참고문헌

  1. Kim, Y. H., Park, D. G., Moon, D. G., Kim, W. K., and Han, J. I., 2004, "Organic Thin Film Transistor-Driven Liquid Crystal Displays on Flexible Polymer Substrate," Jpn. J. Appl. Phys., Vol. 43, No. 6A, pp. 3605-3608. https://doi.org/10.1143/JJAP.43.3605
  2. Sugimoto, A., Ochi, H., Fujimura, S., Yoshida, A., Miyadera, T. and Tsuchida, M., 2004, "Flexible OLED Displays Using Plastic Substrates," IEEE J. Selected Topics in Quant, Vol. 10, No. 1, pp. 107-114. https://doi.org/10.1109/JSTQE.2004.824112
  3. Kim, D. H., Xiao, J., Song, J., Huang, Y. and Rogers, J. A., 2010, "Stretchable, Curvilinear Electronics Based on Inorganic Materials," Adv. Mater., Vol. 22, No. 1, pp. 1-17. https://doi.org/10.1002/adma.201090021
  4. Kim, D.-H., Kim, Y. S., Wu, J., Liu, Z., Song, J., Kim, H.-S., Huang, Y. Y., Hwang, K. K. and Rogers, J. A., 2009, "Ultrathin Silicon Circuits with Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper," Adv. Mater., Vol. 21, pp. 1-5.
  5. Khang, D. Y., Jiang, H., Huang, Y. and Rogers, J. A., 2006, "A Stretchable from of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates," Sci., Vol. 311, pp. 208-212. https://doi.org/10.1126/science.1121401
  6. Spaepen, F., 2000, "Interfaces and Stresses in Thin Films," Acta Materialia, Vol. 48, p. 31. https://doi.org/10.1016/S1359-6454(99)00286-4
  7. Carcia, P. F., McLean, R. S., Reilly, M. H. and Nunes G. Jr., 2003, "Transparent ZnO Thin-Film Transistor Fabricated by rf Magnetron Sputtering," Applied Physics Letters , Vol. 82, pp. 1117-1119. https://doi.org/10.1063/1.1553997
  8. Kim, D.-H., Ahn, J-H., Choi, W. M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y. Y., Liu, Z., Lu, C. and Rogers, J. A., 2008, "Stretchable and Foldable Silicon Integrated Circuits," Sci., Vol. 320, No. 5875, pp. 507-511. https://doi.org/10.1126/science.1154367
  9. Lee, S.-C., Lee, D.-K., Seol, Y.-G., Ahn, J.-H., Lee, N.-E. and Kim, Y.-J., 2010, "Deformation Characteristics of an Organic Thin Film Transistor," Journal of Nanoscience and Nanotechnology, (In press).
  10. Liu, C. P., 2002, "Evolution of Ge/Si(001) Islands upon Oxidation and Water Etching," Thin Solid Films, Vol. 415, pp. 296-302. https://doi.org/10.1016/S0040-6090(02)00539-4
  11. Kingston, R. H., 1956, "Review of Germanium Surface Phenomena," Journal of Applied Physics, Vol. 27, No. 2, pp. 101-114. https://doi.org/10.1063/1.1722317
  12. Lu, X. and Xia, Y., 2006, "Buckling Down for Flexible Electronics," Nature Nanotechnology, Vol. 1, pp. 163-164. https://doi.org/10.1038/nnano.2006.157
  13. Neerinck, D. G. and Vink, T. J., 1996, "Depth Profiling of Thin ITO Films by Grazing Incidence X-ray Diffraction," Thin Solid Films, Vol. 278, pp. 12-17. https://doi.org/10.1016/0040-6090(95)08117-8
  14. Ozen, I., Gulgun, M. A. and Ozcan, M., 2004, "Selfinduced Crystallinity in RF Magnetron Sputtered ZnO Thin Films," Key Engineering Materials, Vol. 264-268, pp. 1225-1228. https://doi.org/10.4028/www.scientific.net/KEM.264-268.1225
  15. Kim, M. T., 1996, "Influence of Substrates on the Elastic Reaction of Films for the Microindentation Tests," Thin Solid Films, Vol. 283, pp. 12-16. https://doi.org/10.1016/0040-6090(95)08498-3
  16. Jiang, H., Khang, D.-Y., Song, J., Sun, Y., Huang, Y. and Rogers, J. A., 2007, "Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports," Proceedings of the National Academy of Science, Vol. 104, No. 40, pp. 15607-15612. https://doi.org/10.1073/pnas.0702927104