• Title/Summary/Keyword: OWC wave power generation system

Search Result 13, Processing Time 0.035 seconds

Control of 30kW Grid-Connected PCS for Wave Power Generation (파력발전용 30kW 계통연계형 PCS 제어)

  • Kim, Wan-Seok;Kim, Jae-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.470-475
    • /
    • 2019
  • This paper deals with a 30kW grid-connected PCS (Power Conversion System) for an Oscillating Water Column (OWC) wave-power generation system. Wave power generation in marine energy is suitable for Korea with the characteristics of a peninsula with three sides facing the sea. In the case of coastal disasters, wave generators can act as a breakwater to reduce damage, and can be integrated with other marine power generation systems to increase efficiency. Wave power generation systems are classified into various types, such as oscillating bodies, OWC, and overtopping according to the operation principle, and they can also be classified into two types according to the installation method: a fixed structure and floating structure. This paper proposes a 30kW grid-connected PCS topology and model for OWC wave power generation that is structurally stable with a turbine and generator that are relatively easy to maintain, and then provide a control method required for grid connection, including DC link voltage control. Simulation verification was performed to verify the proposed PCS.

Study of Power Output Characteristics of Wave Energy Conversion System According to Turbine Installation Method Combined with Breakwater (방파제 부착형 파력발전시스템의 터빈설치 방법에 따른 출력특성에 관한 연구)

  • Lee, HunSeok;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.317-321
    • /
    • 2015
  • Many kinds of generation systems have been developed to use ocean energy. Among these, with the use of an oscillating water column (OWC) for power generation is attracting attention. The OWC-type wave power generation system converts wave energy into electricity by operating a generator turbine with the oscillating water level in a column of water. There are two ways to convert wave power into electricity using an OWC. One uses a cross-flow turbine using the water level inside the OWC. The other method uses the flow of air in a Wells turbine, which depends on the water level. An experiment was carried out using a 2-D wave tank in order to minimize the number of empirical tests. The design factors were taken from Koo et al. (2012) and the experimental environment assumed by free surface motion. This paper deals with characteristics of two types of wave energy conversion systems combine with a breakwater. One model uses an air-driven Wells turbine and a cross-flow water turbine. The other type uses a cross-flow water turbine. Wave energy converters with OWCs have mostly been studied using air-driven Wells turbines. The efficiency of the cross-flow turbine was about 15% higher than that of the other model, and the water level of the OWC internal chamber for the cross-flow water turbine and air-driven Wells turbine was less than about 40% lower than the one using only the cross-flow water turbine.

A Study on Uncertainty Quantification and Performance Confidence Interval Estimation for Application to Digital Twin of Oscillating Water Column Type Wave Power Generator System (진동수주형 파력발전 시스템의 디지털 트윈 적용을 위한 불확실성 정량화 및 성능 신뢰구간 추정 연구)

  • Tae-Kyun Kim;Su-Gil Cho;Jae-Won Oh;Tae-Hee Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.401-409
    • /
    • 2023
  • Oscillating water column (OWC) type wave power generator system is a power generation system that uses wave energy, a sustainable and renewable energy source. Irregular cycles and wave heights act as factors that make it difficult to secure generation efficiency of the wave power generator system. Recently, research for improving power generation efficiency is being conducted by applying digital twin technology to OWC type wave energy converter system. However, digital twin using sensor data can predict erroneous performance due to uncertainty in the sensor data. Therefore, this study proposes an uncertainty analysis method for sensor data which is used in digital twin to secure the reliability of digital twin prediction results. Uncertainty quantification considering sensor data characteristics and future uncertainty information according to uncertainty propagation were derived mathematically, and confidence interval estimation was performed based on the proposed method.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

A Study on Entrance Section of Hybrid Wave Power Generation System (하이브리드형 파력발전시스템의 유입구 형상 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.597-601
    • /
    • 2013
  • Recently, many studies about the wave power generation system for the marine structure as the hybrid form in linked with the original features have been made of. Of these, the wave power generation system using oscillating water column(OWC) has function to convert wave energy to electrical energy with original function of the break water structure. In this type of generation system, it is important to make the flow of sea water as much as possible without loss. Output characteristics of wave power generation system depending on entrance section were described in the paper. Also, flow quantity changing with entrance section, velocity of sea water and output of wells turbine were measured by simulating OWC wells turbine model in break water, one of the general marine structure. Finally, entrance section was suggested to enhance the energy conversion efficiency based on the results of simulation.

Numerical Simulation of Irregular Airflow within Wave Power Converter Using OWC by Action of 3-Dimensional Irregular Waves (3차원불규칙파동장하의 진동수주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.189-202
    • /
    • 2012
  • An Oscillating Water Column (OWC) wave generation system uses the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. It is well known that OWC is one of the most efficient devices to harness wave power. This study estimated the air flow velocity from the time variation of the water level fluctuation in the air chamber under regular wave conditions using 3-dimensional numerical irregular wave tank (3D-NIT) model that can simulate the 3-dimensional irregular wave field. The applicability of the 3D-NIT model was validated by comparing numerically predicted air flow velocities with hydraulic experimental results. In addition, the characteristics of air flow frequency spectrum variation due to the incident frequency spectrum change, and the variations of frequency spectrum and wave reflection due to the existence of converter inside the air chamber were discussed. It is found that the phase difference exists in between the air flow velocity and the water level fluctuation inside the air chamber, and the peak frequency of the spectrum in water level fluctuation is amplified by the resonance in the air chamber.

Numerical Simulation of Irregular Airflow in OWC Wave Generation System Considering Sea Water Exchange (해수교환을 고려한 진동수주형 파력발전구조물에서 불규칙공기흐름에 관한 수치해석)

  • Lee, Kwang Ho;Park, Jung Hyun;Cho, Sung;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.128-137
    • /
    • 2013
  • Due to the global warming and air pollution, interest in renewable energies has increased in recent years. In particular, the crisis of the depletion of fossil energy resources in the near future has accelerated the renewable energy technologies. Among the renewable energy resources, oceans covering almost three-fourths of earth's surface have an enormous amount of energy. For this reason, various approaches have been made to harness the tremendous energy potential. In order to achieve two purposes: to improve harbor water quality and to use wave energy, this study proposed a sea water exchange structure applying an Oscillating Water Column (OWC) wave generation system that utilizes the air flow velocity induced by the vertical motion of water column in the air chamber as a driving force of turbine. In particular, the airflow velocity in the air chamber was estimated from the time variations of water surface profile computed by using 3D-NIT model based on the 3-dimensional irregular numerical wave tank. The relationship of the frequency spectrums between the computed airflow velocities and the incident waves was analyzed. This study also discussed the characteristics of frequency spectrums in the air chamber according to the presence of the structure, wave deformations by the structure, and the power of the water and air flows were also investigated. It is found that the phase difference exists in the time series data of water level fluctuations and air flow in the air chamber and the air flow power is superior to the fluid flow power.

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

Performance Analysis of OWC-MB Hybrid Wave Energy Harvesting System Attached at Caisson Breakwater (케이슨방파제 부착 OWC-MB 복합형 파력발전시스템 성능해석)

  • Seo, Ji Hye;Park, Woo-Sun;Lee, Joong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.589-597
    • /
    • 2015
  • Wave energy harvesting system using OWC(Oscillating Water Column) and MB (Movable Body) attached at the caisson breakwater was studied. This system was suggested to maximize wave energy extraction using resonant phenomena of oscillating water column and buoy in wave channel (Park et al., 2014). Not only incident waves but also reflected waves from the breakwater can be used as sources of exciting force for harvesting wave energy efficiently. Using Galerkin finite model based on the linear wave theory (Park, 1991), the performance of the system was evaluated for various damping ratios of power take off system. Numerical results show that the proposed system is excellent in efficiency compared with that of conventional system and the performance of the system is governed by the resonance of oscillating water column in the wave channel. In addition, the additional efforts to minimize viscous damping was found to be necessary because viscous damping occurring in the channel and around the moving buoy is significant in generation efficiency.