고염에서 생장하는 젓갈 유래 Bacteria의 분리 및 고염에서의 생육 특성

Isolation of Bacteria from Jeotgal Using High-salt-content Media and Their Growths in High-salt Condition

  • 안두현 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • An, Doo-Hyun (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 투고 : 2011.07.18
  • 심사 : 2011.08.12
  • 발행 : 2011.09.28

초록

젓갈의 숙성에 미치는 bacteria의 역할 규명을 목표로 고염에서 생장하며 단백질 분해활성을 나타내는 bacteria를 멸치젓과 새우젓으로부터 분리하여 이들의 고염에서의 생장을 검토하였다. NaCl이 15% 첨가된 고체배지를 이용하여 bacteria를 분리한 경우, 멸치젓으로부터는 Bacillus 및 근연속이, 새우젓으로부터는 Staphylococcus 속이 우점으로 분리되었고, 멸치젓으로부터 분리된 Virgibacillus halodenitrificans와 새우젓으로부터 분리된 Halobacillus trueperi가 단백질 분해활성을 나타내었다. NaCl이 8% 첨가된 고체배지에서 단백질 분해활성을 나타낸 멸치젓 유래 bacteria는 Vb. halodenitrificans를 중심으로 한 Bacillus 근연 속으로 NaCl 농도 15%에서 생장하는 bacteria의 군집과 크게 다르지 않았다. 그러나 NaCl이 8% 첨가된 고체배지에서 단백질 분해 활성을 나타낸 새우젓 유래 bacteria는 NaCl 농도 15%에서 분리된 우점균 Staphylococcus, Salinicoccus, Salimicrobium 속이 아닌 Bacillus 속과 Planococcus, Salinivibrio 속으로 확인되어 새우젓의 우점종은 단백질 분해와 큰 관련이 없는 것으로 추정된다. 멸치젓의 우점종 Vb. halodenitrificans와 새우젓의 우점종 Staphylococcus equorum은 NaCl이 25% 첨가된 배지에서도 생장을 나타내어 젓갈 숙성과 높은 관련성을 가지고 있으며, 종균으로 이용될 높은 가능성을 가지고 있다.

Proteolytic bacteria were isolated from Myeolchi-jeotgal and Saeu-jeotgal using high-salt-content media and their growths in the media containing 25% NaCl were monitored to draw the role of bacteria in the ripening of jeotgal. The most populous genus in Myeolchi-jeotgal detected on agar media with 15% NaCl was Bacillus and its relatives, while the most populous in Saeu-jeotgal was Staphylococcus. Among the isolates, Virgibacillus halodenitrificans from Myeolchi-jeotgal and Halobacillus trueperi from Saeu-jeotgal showed proteinase activities. The species from Myeolchi-jeotgal showed proteinase activity on the agar media with 8% NaCl were similar to those isolated from the media with 15% NaCl. The dominant of Myeolchi-jeotgal isolated at the 15% NaCl concentration may be involved in the proteolysis. The proteolytic species from Saeu-jeotgal on the agar media with 8% NaCl were the genera Bacillus, Salinicoccus, and Salimicrobium those were not the dominants at 15% NaCl condition. The dominant isolates from Saeu-jeotgal on agar media with 15% NaCl may not be involved in the proteolysis of Saeu-jeotgal. Vb. halodenitrificans and Staphylococcus equorum, the dominant species from Myeolchi-jeotgal and Saeu-jeotgal, showed growths at the nutrient broth containing 25% NaCl. They may play a significant role in the ripening of jeotgal and have a high possibility to be used as the starter.

키워드

참고문헌

  1. Ahn, Y.-S., C.-J. Kim, and S.-H. Choi. 1990. Production of protease by the extreme halophile, Halobacterium sp. J. Korean Agric. Chem. Soc. 33: 247-251.
  2. Cha, Y.-J., S.-Y. Cho, K.-S. Oh, and E.-H. Lee. 1983. Studies on the processing of low salt fermented sea foods (2. The taste compounds of low salt fermented sardine). Bull. Korean Fish. Soc. 16: 140-146.
  3. Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y.-W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Evers, D. J. and D. J. Carroll. 1998. Ensiling salt-preserved shrimp waste with grass straw and molasses. Anim. Feed Sci. Technol. 71: 241-249. https://doi.org/10.1016/S0377-8401(97)00145-4
  5. Franca, L., F. A. Rainey, M. F. Nobre, and M. S. da Costa. 2006. Salinicoccus salsiraiae sp. nov.: a new moderately halophilic gram-positive bacterium isolated from salted skate. Extremophiles 10: 531-536. https://doi.org/10.1007/s00792-006-0532-1
  6. Fukami, K., M. Satomi, Y. Funatsu, K.-I. Kawasaki, and S. Watabe. 2004. Characterization and distribution of Staphylococcus sp. implicated for improvement of fish sauce odor. Fisheries Sci. 70: 916-923. https://doi.org/10.1111/j.1444-2906.2004.00887.x
  7. Fukami, K., Y. Funatsu, K. Kawasaki, and S. Watabe. 2004. Improvement of fish-sauce odor by treatment with bacteria isolated from the fish-sauce mush (Moromi) made from frigate mackerel. J. Food Sci. 69: FMS45-49.
  8. Guan, L., K. H. Cho, and J.-H. Lee. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101-113. https://doi.org/10.1016/j.fm.2010.09.001
  9. Hur, S. H. 1996. Critical review on the microbiological standardization of salt-fermented fish product. J. Korean Soc. Food Sci. Nutr. 25: 885-891.
  10. Jeun, J.-H., H.-D. Kim, H.-S. Lee, and B.-H. Ryu. 2004. Isolation and identification of Lactobacillus sp. produced gaminobutyric acid (GABA) from traditional salt fermented anchovy. Korean J. Food Nutr. 17: 72-79.
  11. Jung, Y. J. and D. H. Park. 2004. Physiology and growth properties of halophilic bacteria isolated from jeotgal (salted seafood). Korean J. Microbiol. 40: 263-268.
  12. Kim, H.-J., N.-K. Lee, S.-M. Cho, K.-T. Kim, and H.-D. Paik. 1999. Inhibition of spoilage and pathogenic bacteria by lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 from fermented fish food. Korean J. Food Sci. Technol. 31: 1035-1043.
  13. Kim, S.-J., S.-J. Ma, and H.-L. Kim. 2005. Probiotic properties of lactic acid bacteria and yeasts isolated from Korean traditional food, Jeot-gal. Korean J. Food Preserv. 12: 184-189.
  14. Lane, D. J. 1991. 16S-23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  15. Lee, K. H. 1969. Microbiological and enzymological studies on the flavor components of sea food pickles. J. Korean Agric. Chem. Soc. 11: 1-6.
  16. Lee, J.-G. and W.-K. Choe. 1974. Studies on the variation of microflora during the fermentation of anchovy, Engraulis japonica. Bull. Korean Fish. Soc. 7: 105-114.
  17. Lee, C.-H. 1989. Fish fermentation technology. Korean J. Appl. Microbiol. Bioeng. 17: 645-654.
  18. Lee, W. D. 2001. Recent development of jeotgal (traditional Korean fermented seafood) and its future. Food Ind. Nutr. 6: 23-27.
  19. Lee, N.-K., H.-W. Kim, S.-Y. Choi, and H.-D. Paik. 2003. Some probiotic properties of some lactic acid bacteria and yeasts isolated from Jeotgal. Korean J. Microbiol. Biotechnol. 31: 297-300.
  20. Lee, J.-S., J.-M. Lim, K. C. Lee, J.-C. Lee, Y.-H. Park, and C.-J. Kim. 2006. Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int. J. Syst. Evol. Microbiol. 56: 251-257. https://doi.org/10.1099/ijs.0.63734-0
  21. Levenga, H., P. Donnelly, N. Blijlevens, P. Verweij, H. Shirango, and B. de Pauw. 2004. Fatal hemorrhagic pneumonia caused by infection due to Kytococcus sedentarius-a pathogen of passenger? Ann. Hematol. 83: 447-449. https://doi.org/10.1007/s00277-003-0831-x
  22. Longshaw, C. M., J. D. Wright, A. M. Farrell, and K. T. Holland. 2002. Kytococcus sedentarius, the organism associated with pitted keratolysis, produces two keratin-degrading enzymes. J. Appl. Microbiol. 93: 810-816. https://doi.org/10.1046/j.1365-2672.2002.01742.x
  23. Place, R. B., D. Hiestand, H. R. Gallmann, and M. Teuber. 2003. Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst. Appl. Microbiol. 26: 30-37. https://doi.org/10.1078/072320203322337281
  24. Sands, A. and E. V. Crisan. 1974. Microflora of fermented Korean seafoods. J. Food Sci. 39: 1002-1005. https://doi.org/10.1111/j.1365-2621.1974.tb07296.x
  25. Satomi, M., B. Kimura, M. Mizoi, T. Sato, and T. Fujii. 1997. Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int. J. Syst. Bacteriol. 47: 832-836. https://doi.org/10.1099/00207713-47-3-832
  26. Sims, D., T. Brettin, J. C. Detter, C. Han, A. Lapidus, A. Copeland, T. G. D. Rio, M. Nolan, F. Chen, S. Lucas, H. Tice, J.-F. Cheng, D. Bruce, L. Goodwin, S. Pitluck, G. Ovchinnikova, A. Pati, N. Ivanova, K. Mavromatis, A. Chen, K. Palaniappan, P. D'haeseleer, P. Chain, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholz, S. Schneider, M. Goker, R. Pukall, N. C. Kyrpides, and H.-P. Klenk. 2009. Complete genome sequence of Kytococcus sedentarius type strain $(541^T)$. Stand. Genomic Sci. 1: 12-20. https://doi.org/10.4056/sigs.761
  27. Spring, S., W. Ludwig, M. C. Marquez, A. Ventosa, and K.- H. Schleifer. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46: 492-496. https://doi.org/10.1099/00207713-46-2-492
  28. Um, M.-A. and C.-H. Lee. 1996. Isolation and identification of Staphylococcus sp. from Korean fermented fish products. J. Microbiol. Biotechnol. 6: 340-346.
  29. Yoon, J.-H., K. H. Kang, and Y.-H. Park. 2002. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int. J. Syst. Evol. Microbiol. 52: 2043-2048. https://doi.org/10.1099/ijs.0.02335-0
  30. Yoon, J.-H., T.-K. Oh, and Y.-H. Park. 2004. Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int. J. Syst. Evol. Microbiol. 54: 2163-2167. https://doi.org/10.1099/ijs.0.63196-0
  31. Yoon, J.-H., S.-J. Kang, K.-H. Oh, and T.-K. Oh. 2009. Salimicrobium flavidum sp. nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 59: 2839-2842. https://doi.org/10.1099/ijs.0.010215-0