터널에서 미학적 문제를 야기하는 진균 및 항진균 활성을 가진 탄산칼슘 형성세균의 분리와 특성

Isolation of Fungal Deteriogens Inducing Aesthetical Problems and Antifungal Calcite Forming Bacteria from the Tunnel and Their Characteristics

  • 투고 : 2011.06.20
  • 심사 : 2011.09.02
  • 발행 : 2011.09.28

초록

본 연구는 터널표면의 퇴색 및 변색을 초래할 것으로 생각되는 주요 균사형진균을 결정하고, 그 진균을 방제하기 위해 부근 장소에서 분리된 세균들이 항진균 길항능을 가지는 동시에 탄산칼슘 형성을 확인하였다. 이 균주를 이용하여 모르타르에 적용했을 때 항진균 및 압축강도 증진효과를 가진 세균자원을 확보하는데 그 목적이 있다. 터널내의 오염된 지역에서 시료를 취하여 다양한 배지를 이용하여 곰팡이, 효모 및 세균을 분리하였고, 분리된 진균의 ITS-5.8S rRNA gene sequene와 세균의 16s rDNA sequence를 이용해 부분동정을 실시했다. 분리된 미생물의 터널 내 분포를 결정하였으며, 분리된 세균 5종의 탄산칼슘 형성능력을 확인하였다. 터널내 오염지역에서 가장 널리 분포하는 곰팡이인 C. sphaerospermum KNUC253 과 감수성 시험에 널리 이용되는 공시균인 A. niger KCTC6906을 대상으로 항진균 시험을 실시하였다. 터널 분리세균 5종 모두 urea-$CaCl_2$ 고체배지에서 배양했을 때 콜로니 주변부 에서 종 특이적으로 다양한 크기와 형태의 탄산칼슘을 형성함을 확인하였다. 그 중 B. aryabhatti KNUC205는 감수성 곰팡이를 대상으로 뛰어난 항진균 길항능을 보였다.

The purpose of this study was to isolate and characterize fungal deteriogens, which induce discoloration of the cement tunnel, and calcite forming bacteria (CFBs), which have antifungal activity against fungal deteriogens. Isolation of mold, bacteria and yeast was performed using several solid media and partially identified using internal transcribed spacer (ITS); 5.8S rRNA gene sequencing and 16s rDNA sequencing. A total of 19 microbial strains were identified with the most widely distributed fungal strain being Cladospirum sphaerospermum. In addition, five bacteria derived from the tunnel were identified as CFBs. Amongst the latter, Bacillus aryabhatti KNUC205 exhibited antifungal activity against Cladospirum sphaerospermum KNUC253 and Aspergillus niger KCTC6906 as concentrated filtered supernatants.

키워드

참고문헌

  1. Diakumaku, E., A. A. Gorbushinab, W. E. Krumbeina, L. Paninab and S. Soukharjevskib. 1995. Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total. Environ. 167: 295-304. https://doi.org/10.1016/0048-9697(95)04590-W
  2. De Muynck, W., N. De Belle, and W. Verstraete. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72. https://doi.org/10.1111/j.1365-2672.2009.04395.x
  3. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  4. Do, J. G., H. Song, H. S. So and Y. S. Soh. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376. https://doi.org/10.1016/j.cemconres.2004.06.021
  5. Ghosha, P., S. Mandala, B. D. Chattopadhyayb, and S. Palc. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  6. Gu, J. D., T. E. Ford, N.S. Berke, and R. Mitchell, 1998. Biodeterioration of concrete by the fungus Fusarium. Inter. Bioterioration 41: 101-109.
  7. Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbial. 69: 4901- 4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  8. Hughes, K. A., and B. Lawley, 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5: 555-565. https://doi.org/10.1046/j.1462-2920.2003.00439.x
  9. Nakhashima, N., Z. Moromizato, and N. Matsuyama. 1991. The antifungal substance produced by Chaetomium trilaterale var. diporum RC-5 isolated from Sclerotia of Sclerotinia sclerotiorum. Ann. Phytopath. Soc. Japan 57: 657-662. https://doi.org/10.3186/jjphytopath.57.657
  10. Pangallo, D., K. Chovanová, A. Simonovicová, and P. Ferianc. 2009. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287. https://doi.org/10.1139/w08-136
  11. Park, S. J., N. Y. Lee, W.J. Kim and S.-Y. Ghim. 2010. Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbial. Biotechnol. 38: 216-221.
  12. Queener, S. W., and J. J. Capone. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
  13. Ramacjandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganism. ACI. Mater. 98: 3-9.
  14. Rauch, M. E., H. W. Graef, S. M. Rozenzhak, S. E. Jones, C. A. Bleckmann, R. L. Kruger, R. R. Naik, and M. O. Stone. 2006. Characterization of microbial contamination in United States Air Force aviation fuel tanks. J. Ind. Microbiol. Biotechnol. 33: 29-6. https://doi.org/10.1007/s10295-005-0023-x
  15. Rim, S.O., J. H. Lee, S. A. Khan, I. J. Lee, I. K. R, K. S. Lee, and J. G. Kim. 2007. Isolation and identification of fungal strains producing giberellins from the root of plants. Kor. J. Microbial. Biotechnol. 35: 357-363.
  16. Shen, S. S., F. Z. Piao, B. W. Lee and C. S. Park. 2007. Characterization of antibiotic substance produced by Serratia plymuthica A21-4 and the biological control activity against Pepper Phytophthora Blight. Plant Pathol. J. 23(3): 180-186. https://doi.org/10.5423/PPJ.2007.23.3.180
  17. Tagg, J. R. and A. R. McGiven. 1971. Assay system for bacteriocin. Appl. Microbiol. 21: 943.
  18. Th. Warscheid., and J. Braams. 2010. Biodeterioration of stone: a review. Inter. Biodeterioration 46: 343-368.
  19. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025
  20. Woo., P. C. Y., S. K. P. Lau, J. L. L. Teng, H. Tse, and K.-Y. Yuen. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14: 908-934. https://doi.org/10.1111/j.1469-0691.2008.02070.x