호냉성 해양세균 Shewanella sp. L93로부터 Eicosapentaenoic Acid 생산 및 정제를 위한 최적화 조건

Optimal Condition for Eicosapentaenoic Acid Production and Purification from Psychrophillic Marine Baterium Shewanella sp. L93

  • 모상준 (명지대학교 생명과학정보학부) ;
  • 홍혜원 (한국의약품시험연구소) ;
  • 방지헌 (안양대학교 해양생명공학과) ;
  • 조기웅 (안양대학교 해양생명공학과)
  • Mo, Sang-Joon (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Hong, Hye-Won (Korea Drug Test Laboratory) ;
  • Bang, Ji-Heon (Department of Marine Biotechnology, Anyang University) ;
  • Cho, Ki-Woong (Department of Marine Biotechnology, Anyang University)
  • 투고 : 2011.05.31
  • 심사 : 2011.08.05
  • 발행 : 2011.09.28

초록

Eicosapentaenoic acid 생산 세균을 얻기 위해 1999~2000년 하계연구 기간 중에 남극 생물 및 침적토를 사용하여 600주의 균주를 분리하였고 TLC와 GC를 사용하여 오메가-3 고도불포화 지방산 EPA를 생산하는 미생물 7 주를 성공적으로 분리하였으며, 이중 EPA 생산이 가장 높은 L93 균주를 선발하였다. 16S rDNA의 염기서열 분석을 통하여 Shewanella 속으로 조사되었으며, 이에 분리된 균주를 Shewanella sp. L93라 명명하였다. EPA를 생산 최적 배양온도 $4^{\circ}C$이며, 초기 pH 7에서 최적 EPA 함량을 보였다. 아울러 염 농도는 50 %(w/v)에서 생산이 최대였다. EPA 최적 생산 조건을 이용하여 리터당 320 mg 생산할 수 있는 생산 시스템을 확립하였다. Urea 침전법과 HPLC을 이용하여 수율 72% 이상의 97% 순도를 가진 EPA를 정제할 수 있는 분리 정제 시스템 또한 본 연구를 통하여 확립하였다.

To obtain eicosapentaenoic acid (EPA)-producing bacteria, some 600 strains of bacteria were isolated from Antarctic sediment and marine organisms during the summer expedition of 1999-2000 and 7 EPA-producing bacteria were obtained through screening with TLC and GC. A strain designated as L93 showed the highest EPA production, which was gram-negative, rod-shaped bacterium. L93 strain was identified as Shewanella sp., from the sequence analysis of 16S rDNA. Optimal conditions temperature and pH for the growth and EPA production were about $4^{\circ}C$ and pH 7. In addition, its production was optimized by 50%(w/v) sea salt. We establish the optimal production system to produce about 320 mg per liter by using this optimal EPA production conditions. EPA-methyl ester was purified from cultured L93 strain to a purity of higher than 97% and typical purification yield is greater than 72% of the input amount via urea complexation and HPLC.

키워드

참고문헌

  1. Bang, H. O. and J. Dyerberg. 1972. Plasma lipids and lipoproteins in Gleenlandic west coast Eakimos. Acta Med. Scand. 192: 85-94.
  2. Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. D. Nichols, and T. A. McMeekin. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47: 1040-1047. https://doi.org/10.1099/00207713-47-4-1040
  3. Cho, K. W. and S. J. Mo. 1999. Screening and characterization of eicosapentaenoic acid-producing marine bacteria. Biotechnol. Lett. 21: 215-218. https://doi.org/10.1023/A:1005445624918
  4. Christie, W. W. 1982. Lipid Analysis, Pergamon Press. London.
  5. Connor, S. L. and W. E. Conner. 1997. Are fish oils benefical in the prevention and treatment of coronary artery disease? Am. J. Clin. Nutr. 66 (suppl): 1020-1031.
  6. Dyerberg, J. and H. O. Bang. 1979. Lipid metabolism, atherogenesis, and haemostasis in Eskimos: the role of the prostaglandin-3 family. Haemostasis 8: 227-233.
  7. Dyeberg, J., H. O. Bang, E. Stoffersen, S. Moncada, and J. R. Vane. 1978. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet ii: 117-119.
  8. Kelly, J. F. 1991. The metabolic role of n - 3 polyunsaturated fatty acids: relationship to human disease. Comp. Biochem. Physiol. A Comp. Physiol. 98: 581-585. https://doi.org/10.1016/0300-9629(91)90450-Q
  9. Lane, D. J. 1991. Nucleic acid techniques in bacterial systematic, pp. 115-175. John Wiley and Sons, New York, U.S.A.
  10. Lee, S. J., P. S. Seo, C. H. Kim, O. Kwon, B. K. Hur, and J. W. Seo. 2009. Isolation and characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. BR-2. J. Microbiol. Biotechnol. 19: 881-887. https://doi.org/10.4014/jmb.0902.090
  11. Lee, W. H., K. W. Cho, S. Y. Park, K. S. Shin, D. S. Lee, S. K. Hwang, S. J. Seo, J. M. Kim, S. Y. Ghim, B. H. Song, S. H. Lee, and J. G. Kim. 2008. Identification of psychrophile Shewanella sp. KMG427 as an eicosapentaenoic acid producer. J. Microbiol. Biotechnol. 18: 1869-1873.
  12. Lopoz Alonso, D., E. Molina Grima, J. A. Sunclez Perez, J. L. Gracia Sanchez, and F. Gracia Camacho. 1992. Fatty acid variation among different isolates of a single strain of Isochrysis galbana. Phytochemistry 31: 3901-3904. https://doi.org/10.1016/S0031-9422(00)97550-2
  13. Pettinella, C., S. H. Lee, F. Cipollone, and I. A. Blair. 2007. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 850: 168-176.
  14. Salunkhe, D., N. Tiwari, S. Walujksr, and R. Bhadekar. 2011. Halomonas sp. nov., an EPA-producing mesophilic marine isolate from the Indian Ocean. Pol. J. Microbiol. 60: 73-78.
  15. Taketama, H., K. Iwamoto, S. Hata, H. Takno, and T. Matsunaga. 1996. DHA enrichment of rotifers: A simple two-step culture using the unicellula algae chlorella regularis and Isochrysis galbana. J. Mar. Biotechnol. 3: 244-247.
  16. Yazawa, K., K. Araki, N. Okazaki, K. Watanabe, C. Ishikawa, A. Inoue, N. Numao, and K. Kondo. 1988. Production of eicosapentaenoic acid by marine bacteria. J. Biochem. 103: 5-7.