Bioremediation of Diesel-Contaminated Soils by Natural Attenuation, Biostimulation and Bioaugmentation Employing Rhodococcus sp. EH831

Natural attenuation, biostimulation 및 Rhodococcus sp. EH831을 이용한 bioaugmentation에 의한 디젤 오염 토양의 정화

  • Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kang, Yeon-Sil (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 이은희 (이화여자대학교 환경공학과) ;
  • 강연실 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2011.02.23
  • Accepted : 2011.03.15
  • Published : 2011.03.28

Abstract

Three bioremediation methods, natural attenuation (NA), biostimulation (BS) and bioaugmentation (BA) were applied to remediate diesel-contaminated soil, with their remediation efficiencies and soil microbial activities compared both with and without surfactant (Tween 80). BA treatment employing Rhodococcus sp. EH831 was the most effective for the remediation of diesel-contaminated soil at initial remediation stage. On the addition of surfactant, no significant effect on the remediation performance was observed. A negative correlation was found between the dehydrogenase activity (DHA) and residual concentration of total petroleum hydrocarbons (TPHs) at below 20,000 mg-$TPHs{\cdot}kg$-dry $soil^{-1}$, as follows: DHA (${\mu}g$-TPF(Triphenylformazan)${\cdot}g$-dry $soil^{-1}\;d^{-1}$) = -0.02 ${\times}$ TPHs concentration (mg-$TPHs{\cdot}kg$-dry $soil^{-1}$) + 425.76 (2500 ${\leq}$ TPHs concentration ${\leq}$ 20000, p < 0.01).

3가지 종류의 생물정화법인 natural attenuation (NA), biostimulation (BS) 및 bioaugmentation (BA) 방법을 디젤로 오염된 토양을 정화하기 위해 적용하여, 각 방법에 의한 정화효율과 미생물 활성을 계면활성제 첨가 유무(Tween 80)에 따라 비교하였다. 토양 정화 초기 단계에서는 Rhodococcus sp. EH831을 접종원으로 이용하는 BA 방법에 의한 토양 정화효율이 가장 좋았다. 3가지 생물정화방법 모두에서 계면활성제 첨가는 토양 정화효율에 영향을 미치지 않았다. 토양의 탈수소활성(DHA)과 잔류 총석유계탄화수소(TPHs) 농도는 음의 상관관계를 보였다: DHA (${\mu}g-TPF{\cdot}g$-dry $soil^{-1}\;d^{-1}$) = -0.02 ${\times}$ TPHs concentration ($mg-TPHs{\cdot}kg$-dry $soil^{-1}$) + 425.76 (2500 ${\leq}$ TPHs concentration ${\leq}$ 20000, p < 0.01).

Keywords

References

  1. Baek, K.-H., B.-D. Yoon, B.-H. Kim, D.-H. Cho, I.-S. Lee, H.-M. Oh, and H.-S. Kim. 2007. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17: 67-73.
  2. Bastida, F., A. Zsolnay, T. Hernández, and C. Carcía. 2008. Review: Past, present and future of soil quality indices: A biological perspective. Geoderma. 147: 159-171. https://doi.org/10.1016/j.geoderma.2008.08.007
  3. Beck, A. J. and K. C. Jones. 1995. Limitations to the in situ remediation of soils contaminated with organic chemicals in relation to the potential to achieve clean-up criteria. In: Van den Brink, W. J., Bosman, R., Arendt, F. (eds) Contaminated soil '95. Kluwer, Dordrecht, The Netherland, pp. 327-336.
  4. Bento, F. M., A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation, and bioaugmentation. Bioresour. Technol. 96: 1049-1055. https://doi.org/10.1016/j.biortech.2004.09.008
  5. Christofi, N. and I. B. Ivshina. 2002. A reviwe: Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929. https://doi.org/10.1046/j.1365-2672.2002.01774.x
  6. Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, and J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39: 2971-2976. https://doi.org/10.1016/j.soilbio.2007.05.031
  7. Devinny, J. and S. H. Chang. 2000. Bioaugmentation for soil bioremediation, In: Wise, D. L., Trantolo, D. J. (eds) Bioremediation of contaminated soils, Marcel Dekker, New York, pp. 465-488.
  8. Gallego, J. L. R., J. Lpredo, J. F. Llamas, F. Vazquez, and J. Sanchez. 2001. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12: 325-335. https://doi.org/10.1023/A:1014397732435
  9. Huang, H., S. Zhang, N. Wu, L. Luo, and P. Christie. 2009. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 41: 726-734. https://doi.org/10.1016/j.soilbio.2009.01.009
  10. Lai, C.-C., Y.-C. Huang, Y.-H. Wei, and J.-C. Chang. 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167: 609- 614. https://doi.org/10.1016/j.jhazmat.2009.01.017
  11. Lee, E.-H., J. Kim, K. S. Cho, Y. G. Ahn, and G. S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. 17: 64-77. https://doi.org/10.1007/s11356-009-0238-x
  12. Lee, E.-H., S. H. Lee, and K. S. Cho. 2011. Bacterial diversity dynamics in a long-term petroleum-contaminated soil. J. Environ. Sci. Health Part A. 46: 281-290.
  13. Lee, E.-H., H. W. Ryu, and K. S. Cho. 2009. Removal of benzene and toluene in polyurethane biofilter immobilized with Rhodococcus sp. EH831 under transient loading. Bioresour. Technol. 100: 5656-5663. https://doi.org/10.1016/j.biortech.2009.06.036
  14. Lee, M., M. K. Kim, I. Singleton, M. Goodfellow, and S. T. Lee. 2006. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100: 325-333. https://doi.org/10.1111/j.1365-2672.2005.02756.x
  15. Li, H., Y. Zhang, I. Kravchenko, H. Xu, and C. G. Zhang. 2007. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment. J. Environ. Sci. 19: 1003- 1013. https://doi.org/10.1016/S1001-0742(07)60163-6
  16. Li, H., Y. Zhang, C. G. Zhang, and G. X. Chen. 2005. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area. J. Environ. Qual. 34: 1073-1080. https://doi.org/10.2134/jeq2004.0438
  17. Lu, M., Z. Zhang, S. Sun, Q. Wang, and W. Zhong. 2009. Enhanced degradation of bioremediation residues in petroleum- contaminated soil using a two-liquid-phase bioslurry reactor. Chemosphere 77: 161-168. https://doi.org/10.1016/j.chemosphere.2009.08.001
  18. Luthy, R. G., D. A. Dzombak, C. A. Peters, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plant sites. Environ. Sci. Technol. 28: A266-A276. https://doi.org/10.1021/es00055a002
  19. Mamilov, A. S. and O. M. Dilly. 2007. Microbial characteristics during the initial stages of litter decomposition in forest and adjacent cropland soil. Ecol. Eng. 31: 147-153. https://doi.org/10.1016/j.ecoleng.2007.03.005
  20. Margesin, R., M. Hämmerle, and D. Tscherko. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon contamination, fertilizers, and incubation time. Microb. Ecol. 53: 259-269. https://doi.org/10.1007/s00248-006-9136-7
  21. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085-3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  22. Margesin, R. and F. Schinner. 1997. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site-significant role of cold-adapted microorganisms and fertilizers. J. Chem. Tech. Biotechnol. 70: 92-98. https://doi.org/10.1002/(SICI)1097-4660(199709)70:1<92::AID-JCTB683>3.0.CO;2-M
  23. Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. Surfactant- enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380. https://doi.org/10.1016/S0013-7952(00)00117-4
  24. Paria, S. 2008. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 138: 24-58. https://doi.org/10.1016/j.cis.2007.11.001
  25. Prak, D. J. L. and P. H. Pritchard. 2002. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 50. Can. J. Microbiol. 48: 151-158. https://doi.org/10.1139/w02-004
  26. Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136: 187-195. https://doi.org/10.1016/j.envpol.2004.09.025
  27. Stres, B., T. Danev i , L. Pal, M. M. Fuka, L. Resman, S. Leskovec, J. Hacin, D. Stopar, I. Mahne, and I. Mandic- Mulec. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66: 110-122. https://doi.org/10.1111/j.1574-6941.2008.00555.x
  28. Tabatabai, M. A. 1982. Soil enzymes. In: Page, A. L., Miller, R. H., Keeney, R. (eds), Methods of Soil Analysis, Part 2 - Chemical and Microbiological Properties, pp. 903-947.
  29. Tongarun, R., E. Luepromchai, and A. S. Vangnai. 2007. Natural attenuation, biostimulation, and bioaugmentation in 4-Chloroaniline-contaminated soil. Curr. Microbiol. 56: 182- 188.
  30. Toress, L. G., N. Rojas, G. Bautista, and R. Iturbe. 2005. Effect of temperature, and surfactant's HLB and dose over the TPH-diesel biodegradation process in aged soil. Process Biochem. 40: 3296-3302. https://doi.org/10.1016/j.procbio.2005.03.032
  31. Ueno, A., Y. Ito, Y. Yamamoto, I. Yumoto, and H. Okuyama. 2006. Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium Pseudomonas aeruginosa strain WatG. J. Basic Microbiol. 46: 310-317. https://doi.org/10.1002/jobm.200510116
  32. Vázquez, S., B. Nogales, L. Ruberto, E. Hernández, J. Christie -Oleza, A. Lo Balbo, R. Bosch, J. Lalucat, and W. Mac Cormack. 2009. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb. Ecol. 57: 598-610. https://doi.org/10.1007/s00248-008-9420-9
  33. Volkering, F., A. M. Breure, and W. H. Rulkens. 1998. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8: 401-417.
  34. Wurdemann, H., N. C. Lund, and G. Gudehus. 1995. Assessment of a biological in situ remediation. In: Hinchee, R. E., Miller, R.N., Johnson, P. C. (eds) In situ aeration: air sparging, bioventing, and related remediation processes. Battelle Press, Columbus, USA, pp. 237-247.