Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli

황색 포도상구균과 대장균에 대한 은나노 입자의 항균활성

  • Kim, Soo-Hwan (Department of Smart Foods and Drugs, Inje University) ;
  • Lee, Hyeong-Seon (Department of Smart Foods and Drugs, Inje University) ;
  • Ryu, Deok-Seon (Department of Smart Foods and Drugs, Inje University) ;
  • Choi, Soo-Jae (Department of Smart Foods and Drugs, Inje University) ;
  • Lee, Dong-Seok (Department of Smart Foods and Drugs, Inje University)
  • 김수환 (인제대학교 식의약생명공학과) ;
  • 이형선 (인제대학교 식의약생명공학과) ;
  • 류덕선 (인제대학교 식의약생명공학과) ;
  • 최수재 (인제대학교 식의약생명공학과) ;
  • 이동석 (인제대학교 식의약생명공학과)
  • Received : 2010.12.16
  • Accepted : 2011.02.25
  • Published : 2011.03.28

Abstract

The antibacterial activities of silver nanoparticles (Ag-NPs) were studied with respect to Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli by observing the bacterial cells treated or not with Ag-NPs by FE-SEM as well as measuring the growth curves, formation of bactericidal ROS, protein leakage, and lactate dehydrogenase activity involved in the respiratory chain. Bacterial cells were treated with Ag-NPs powder, and the growth rates were investigated under varying concentrations of Ag-NPs, incubation times, incubation temperatures, and pHs. As a result, S. aureus and E. coli were shown to be substantially inhibited by Ag-NPs, and the antibacterial activity of Ag-NPs did not fluctuate with temperature or pH. These results suggest that Ag-NPs could be used as an effective antibacterial material.

본 연구는 은나노 입자의 항균활성을 알아보기 위하여, 그람 양성세균인 황색포도상구균과 그람 음성세균인 대장균에 대한 은나노 입자(Ag-NPs)를 처리 후, 세균세포 생장곡선측정, 활성산소생성능 측정, 세포질 단백질 누출량 측정, 젖산탈수소효소 활성측정 및 고분해능 임계방사 주사전자현미경 관찰이 수행되었다. 세균세포의 생장곡선 측정은 다양한 농도, 배양시간, 배양온도 및 pH에서 수행되었다. 결과적으로 황색 포도상구균과 대장균은 배양온도와 pH에 영향을 받지않고 은나노 입자에 의해 효과적으로 생장억제가 이루어지는 것을 관찰할 수 있었다. 또한 활성산소의 생성에 의하여 세포막의 파괴로 세포질내 물질의 유출을 세포질 유래 단백질 측정으로 확인할 수 있었으며, 젖산탈수소효소 활성측정을 통하여 은나노 입자에 대한 세포호흡억제활성 또한 확인할 수 있었다. 임계방사 주사전자현미경 관찰결과 은나노 입자에 의한 세균 세포표면의 형태학적 변화 또한 관찰되었다. 이러한 결과를 통하여 은나노 입자를 효과적인 항균활성소재로 활용 가능함이 입증되었다.

Keywords

References

  1. Amro, N. A., L. P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, and G. Liu. 2000. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16: 2789- 2796. https://doi.org/10.1021/la991013x
  2. Berger, T. J., J. A. Spadaro, S. E. Chapin, and R. O. Becker. 1996. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Ch. 9: 357-358.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brown, T. and D. Smith. 1976. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett. 3: 155-162.
  5. Corinne, Pellieux, A. Dewilde, C. Pierlot, and J.-M. Aubry. 2000. Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods in Enzymology. 319: 197-207.
  6. Danilczuk, M., A. Lund, J. Saldo, H. Yamada, and J. Michalik. 2006. Conduction electron spin resonance of small silver particles. Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 63: 189-191. https://doi.org/10.1016/j.saa.2005.05.002
  7. Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  8. Fuhrmann, G. F. and A. Rothstein. 1968. The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochim. Biophys. Acta. 163: 331-338. https://doi.org/10.1016/0005-2736(68)90118-1
  9. Garrard, W. and J. Lascelles. 1968. Regulation of Staphylococcus aureus lactate dehydrogenase. J. Bacteriol. 95: 152- 156.
  10. Guerlava, P., V. Izac, and J.-L. Tholozan. 1998. Comparison of different methods of cell lysis and protein measurements in clostridium perfringens: Application to the cell volume determination. Curr. Microbiol. 36: 131-135. https://doi.org/10.1007/PL00006756
  11. Izatt, R. M., C. J. J., and J. H. Rytting. 1971. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71: 439-481. https://doi.org/10.1021/cr60273a002
  12. Jones, S. A., P. G. Bowler, M. Walker, and D. Parsons. 2004. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen. 12: 288-294. https://doi.org/10.1111/j.1067-1927.2004.012304.x
  13. Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Am. Soc. Microbiol. 74: 2171-2178.
  14. Kim, J. S., E. Kuk, K. N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol. 3: 95- 101. https://doi.org/10.1016/j.nano.2006.12.001
  15. Kim, J. Y., K. Sungeun, J. Kim, L. Jongchan, and J. Yoon. 2005. The biocidal activity of nano-sized silver particles comparing with silver ion. Korean Soc. Environ. Eng. 27: 771-776.
  16. Kye, I.-S., Y.-S. Jeon, J.-K. No, Y.-J. Kim, K. H. Lee, K. H. Shin, J. Kim, T. Yokozawa, and H.-Y. Chung. 1999. Reactive oxygen scavenging activity of green tea polyphenols. J. Korea Gerontol. 9: 10-17.
  17. Li, W. R., X. B. Xie, Q. S. Shi, H.-Y. Zeng, Y.-S. OU-Yang, and Y.-B. Chen. 2009. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Microb. Cell Physiol. 85: 1115-1122.
  18. Magana, S. M., P. Quintana, D. H. Aguilar, J. A. Toledo, C. Angeles-Chavez, M. A. Cortes, L. Leon, Y. Freile-Pelegrin, and T. Lopez, et al. 2008. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A: Chem. 281: 192-199. https://doi.org/10.1016/j.molcata.2007.10.024
  19. Miller, L. P. and S. E. A. McCallan. 1957. Toxic action of metal ions to fungus spores. J. Agric. Food Chem. 5: 116- 122. https://doi.org/10.1021/jf60072a003
  20. Pinto, R. J. B., P. A. A. P. Marques, C. P. Neto, T. Trindade, S. Daina, and P. Sadocco. 2009. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. 5: 2279-2289. https://doi.org/10.1016/j.actbio.2009.02.003
  21. Rahn, R. O. and L. C. Landry. 1973. Ultraviolet irradiation of nucleic acids complexed with heavy stoms. II. Phosphorescence and photodimerization of DNA complexed with Ag. Photochem. Photobiol. 18: 29-38. https://doi.org/10.1111/j.1751-1097.1973.tb06389.x
  22. Rayman, M. K., T. C. Lo, and B. D. Sanwal. 1972. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. J. Biol. Chem. 247: 6332-6339.
  23. Richards, R. M. E., H. A. Odelola, and B. Anderson. 1984. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios. 39: 151-157.
  24. Schreurs, W. J. and H. Rosenberg. 1982. Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152: 7-13.
  25. Shahverdi, A. R., A. Fakhimi, H. R. Shahverdi, and S. Minaian. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed-Nanotechnol. 3: 168-171. https://doi.org/10.1016/j.nano.2007.02.001
  26. Silva Paula, M. M. d., C. V. Franco, B. M. Cesar, L. Rodrigues, T. Barichello, G. D. Savi, L. F. Bellato, M. A. Fiori, and L. d. Silva. 2009. Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater. Sci. Eng. 29: 647-650. https://doi.org/10.1016/j.msec.2008.11.017
  27. Sondi, I. and B. Salopel-sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177- 182. https://doi.org/10.1016/j.jcis.2004.02.012
  28. Stockland, A. E. and C. L. San clemente. 1968. Lactate dehydrogenase activity in certain strains of Staphylococcus aureus. J. Bacteriol. 95: 74-80.
  29. Thomas J., Silhavy, D. Kahne, and S. Walker. 2010. The bacterial Cell Envelope. Cold Spring Harb Perspect Biol. 2: a000414. https://doi.org/10.1101/cshperspect.a000414
  30. Wang, J.-X., L.-X. Wen, Z.-H. Wang, and J.-F. Chen. 2006. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater. Chem. Phys. 96: 90-97. https://doi.org/10.1016/j.matchemphys.2005.06.045
  31. Yakabe, Y., T. Sano, H. Ushio, and T. Yasunaga. 1980. Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem. Lett. 4: 373-376.
  32. Zavriev, S. K., L. E. Minchenkova, M. Vorlickova, A. M. Kolchinsky, M. V. Volkenstein, and V. I. Ivanov. 1979. Circular dichroism anisotropy of DNA with different modifications at N7 of guanine. Biochim. Biophys. Acta. 564: 212- 224. https://doi.org/10.1016/0005-2787(79)90220-X