References
- Atkinson, B. and F. Mavituna. 1983. Biochemical Engineering and Biotechnology Handbook pp. 772-773. The Nature Press.
- Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach, pp. 3. IRL Press, Oxford.
- Converti, A., P. Perego, and J. M. Dominguez. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723. https://doi.org/10.1023/A:1005546814194
- Delgenes, J. P., R. Moletta, and J. M. Navarro. 1989. Fermentation of D-xylose, D-glucose, L-arabinose mixture by Pichia stipitis: Effect of the oxygen transfer rate on fermentation performance. Biotechnol. Bioeng. 34: 398-402. https://doi.org/10.1002/bit.260340314
- du Preez, J. C. and J. P. van der Walt. 1983. Fermentation of Dxylose to ethanol by a strain of Candida shehatae. Biotechnol. Lett. 5: 357-362. https://doi.org/10.1007/BF01141138
- Gaspar, M., G. Kalman, and K. Reczey. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42: 1135-1139. https://doi.org/10.1016/j.procbio.2007.04.003
- Gressel, J. 2008. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246-263. https://doi.org/10.1016/j.plantsci.2007.11.009
- Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, Y.-S. Jang, I.-C. Kim, and H.-Y. Lee. 2009. Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
- Huang, C.-L, Y.-R. Chen, and W.-H. Liu. 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol. 39: 296-300. https://doi.org/10.1016/j.enzmictec.2005.10.017
- Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
- Jeong, G. T., D. H. Park, C. H. Kang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, et al. 2004. Production of biodiesel fuel by transesterification of rapeseed oil. Appl. Biochem. Biotechnol. 113-116: 747-758.
- Jeong, G. T. and D. H. Park. 2006. Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. Appl. Biochem. Biotechnol. 131: 668-679. https://doi.org/10.1385/ABAB:131:1:668
- Jeppsson, M., B. Johansson, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68: 1604-1609. https://doi.org/10.1128/AEM.68.4.1604-1609.2002
- Jin, Y.-S, T.-H. Lee, Y.-D. Choi, Y.-W. Ryu, and J.-H. Seo. 2000. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J. Microbiol. Biotechnol. 10: 564-567.
- Kamoshita, Y., R. Ohashi, and T. Suzuki. 1998. A dense cell culture system for aerobic microorganisms using a shaken ceramic membrane flask with surface aeration. J. Ferment. Bioeng. 85: 218-222. https://doi.org/10.1016/S0922-338X(97)86771-2
- Karimi, K., G. Emtiazi, and M. J. Taherzadeh. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40: 138-144. https://doi.org/10.1016/j.enzmictec.2005.10.046
- Kim, B. S., H.-R. Kim, and C. T. Hou. 2010. Effect of surfactant on the production of oxygenated unsaturated fatty acids by Bacillus megaterium ALA2. New Biotechnol. 27: 33-37. https://doi.org/10.1016/j.nbt.2009.09.002
- Kumar, B. and A. R. Rao. 2009. Oxygen transfer and energy dissipation rate in surface aerator. Bioresour. Technol. 100: 2886-2888. https://doi.org/10.1016/j.biortech.2008.12.031
- Kumar, B., A. K. Patel, and A. R. Rao. 2010. Shape effect on optimal geometric conditions in surface aeration systems. Korean J. Chem. Eng. 27: 159-162. https://doi.org/10.1007/s11814-009-0302-8
- Kweon, S. H., Y. W. Ryu, and J. H. Seo. 1993. Determination of optimum conditions for xylose fermentation by Pichia stipitis. Korean J. Biotechnol. Bioeng. 8: 452-456.
- Ligthelm, M. E., B. A. Prior, and J. C. du Preez. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68. https://doi.org/10.1007/BF00250500
- Lo, C. K., C. P. Pan, and W. H. Liu. 2002. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J. Ind. Microbiol. Biotechnol. 28: 280-283. https://doi.org/10.1038/sj.jim.7000243
- Maleszka, R. and H. Schneider. 1982. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl. Environ. Microbiol. 44: 909-912.
- Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
- Panchal, C. J., L. Bast, L. Russell, and G. Stewart. 1988. Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can. J. Microbiol. 34: 1316-1320. https://doi.org/10.1139/m88-230
- Rao, A. R. and B. Kumar. 2008. Design considerations and economics of different shaped surface aeration tanks. Korean J. Chem. Eng. 25: 1338-1343. https://doi.org/10.1007/s11814-008-0219-7
- Robyt, J. F and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
- Sanchez, S., V. Bravo, E. Castro, A. J. Moya, and F. Camacho. 1977. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Enzyme Microb. Technol. 21: 355-360.
- Sedlak, M. and N. W. Y. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
- Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung. 2009. Highlevel production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
- Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 292-297. 2nd Ed. Prentice-Hall Inc., New Jersey.
- Sun, H., Z.-S. Mao, and G. Yu. 2006. Experimental and numerical study of gas hold-up in surface aerated stirred tanks. Chem. Eng. Sci. 61: 4098-4110. https://doi.org/10.1016/j.ces.2005.12.029
- Vasudevan, P. T. and M. Briggs. 2008. Biodiesel production, current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35: 421-430. https://doi.org/10.1007/s10295-008-0312-2
- Yang, Z., B. Zhang, X. Chen, Z. Bai, and H. Zhang. 2008. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J. Anal. Appl. Pyrolysis 81: 243-246. https://doi.org/10.1016/j.jaap.2007.12.001
- Yuan, J. S., K. H. Tiller, H. Al-Ahmad, N. R. Stewart, and C. N. Stewart Jr. 2008. Plants to power: Bioenergy to fuel the future. Trends Plant Sci. 13: 421-429. https://doi.org/10.1016/j.tplants.2008.06.001
- Zhang, Q., C.-M. Lo, and L.-K. Ju. 2007. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresour. Technol. 98: 753-760. https://doi.org/10.1016/j.biortech.2006.04.006
Cited by
- Pichia stipitis를 이용한 모자반 가수분해물로부터의 bioethanol 생산 시 최적 surface aeration rate vol.26, pp.4, 2011, https://doi.org/10.7841/ksbbj.2011.26.4.311
- 효모 Pichia stipitis를 이용한 구멍갈파래 가수분해 추출물로 부터 바이오 에탄올 생산 vol.39, pp.3, 2011, https://doi.org/10.4489/kjm.2010.39.3.243
- Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation vol.22, pp.1, 2011, https://doi.org/10.4014/jmb.1106.06019
- 에탄올 생산을 위한 효모 Pichia stipitis의 고정화 vol.22, pp.4, 2011, https://doi.org/10.5352/jls.2012.22.4.508
- Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2011, https://doi.org/10.4014/jmb.1304.04014
- Recent advances in liquid biofuel production from algal feedstocks vol.102, pp.None, 2011, https://doi.org/10.1016/j.apenergy.2012.07.031
- Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산 vol.23, pp.7, 2011, https://doi.org/10.5352/jls.2013.23.7.886
- Effect of Water Depth on Seasonal Variation in the Chemical Composition of Akamoku, <i>Sargassum horneri</i> (Turner) C. Agardh vol.7, pp.4, 2016, https://doi.org/10.4236/nr.2016.74015
- Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities vol.15, pp.12, 2011, https://doi.org/10.3390/md15120388
- Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae vol.125, pp.2, 2011, https://doi.org/10.1111/jam.13886
- Enzymatic Saccharification of Laminaria japonica by Cellulase for the Production of Reducing Sugars vol.13, pp.3, 2011, https://doi.org/10.3390/en13030763