DOI QR코드

DOI QR Code

Bioethanol Production from the Hydrolysate of Rape Stem in a Surface-Aerated Fermentor

  • Yeon, Ji-Hyeon (Department of Biotechnology, Chungju National University) ;
  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Choi, Won-Seok (Department of Food Science and Technology, Chungju National University) ;
  • Kim, Il-Chul (Department of Biological Sciences, Chonnam National University) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • Received : 2010.08.02
  • Accepted : 2010.10.24
  • Published : 2011.01.28

Abstract

In this study, we investigated the feasibility of producing bioethanol from the hydrolysate of rape stem. Specifically, the most ideal yeast strain was screened, and the microaeration was performed by surface aeration on a liquid medium surface. Among the yeast strains examined, Pichia stipitis CBS 7126 displayed the best performance in bioethanol production during the surface-aerated fermentor culture. Pichia stipitis CBS 7126 produced maximally 9.56 g/l of bioethanol from the initial total reducing sugars (about 28 g/l). The bioethanol yield was 0.397 (by the DNS method). Furthermore, this controlled surface aeration method holds promise for use in the bioethanol production from the xylose-containing lignocellulosic hydrolysate of biomass.

Keywords

References

  1. Atkinson, B. and F. Mavituna. 1983. Biochemical Engineering and Biotechnology Handbook pp. 772-773. The Nature Press.
  2. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach, pp. 3. IRL Press, Oxford.
  3. Converti, A., P. Perego, and J. M. Dominguez. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723. https://doi.org/10.1023/A:1005546814194
  4. Delgenes, J. P., R. Moletta, and J. M. Navarro. 1989. Fermentation of D-xylose, D-glucose, L-arabinose mixture by Pichia stipitis: Effect of the oxygen transfer rate on fermentation performance. Biotechnol. Bioeng. 34: 398-402. https://doi.org/10.1002/bit.260340314
  5. du Preez, J. C. and J. P. van der Walt. 1983. Fermentation of Dxylose to ethanol by a strain of Candida shehatae. Biotechnol. Lett. 5: 357-362. https://doi.org/10.1007/BF01141138
  6. Gaspar, M., G. Kalman, and K. Reczey. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42: 1135-1139. https://doi.org/10.1016/j.procbio.2007.04.003
  7. Gressel, J. 2008. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246-263. https://doi.org/10.1016/j.plantsci.2007.11.009
  8. Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, Y.-S. Jang, I.-C. Kim, and H.-Y. Lee. 2009. Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
  9. Huang, C.-L, Y.-R. Chen, and W.-H. Liu. 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol. 39: 296-300. https://doi.org/10.1016/j.enzmictec.2005.10.017
  10. Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
  11. Jeong, G. T., D. H. Park, C. H. Kang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, et al. 2004. Production of biodiesel fuel by transesterification of rapeseed oil. Appl. Biochem. Biotechnol. 113-116: 747-758.
  12. Jeong, G. T. and D. H. Park. 2006. Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. Appl. Biochem. Biotechnol. 131: 668-679. https://doi.org/10.1385/ABAB:131:1:668
  13. Jeppsson, M., B. Johansson, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68: 1604-1609. https://doi.org/10.1128/AEM.68.4.1604-1609.2002
  14. Jin, Y.-S, T.-H. Lee, Y.-D. Choi, Y.-W. Ryu, and J.-H. Seo. 2000. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J. Microbiol. Biotechnol. 10: 564-567.
  15. Kamoshita, Y., R. Ohashi, and T. Suzuki. 1998. A dense cell culture system for aerobic microorganisms using a shaken ceramic membrane flask with surface aeration. J. Ferment. Bioeng. 85: 218-222. https://doi.org/10.1016/S0922-338X(97)86771-2
  16. Karimi, K., G. Emtiazi, and M. J. Taherzadeh. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40: 138-144. https://doi.org/10.1016/j.enzmictec.2005.10.046
  17. Kim, B. S., H.-R. Kim, and C. T. Hou. 2010. Effect of surfactant on the production of oxygenated unsaturated fatty acids by Bacillus megaterium ALA2. New Biotechnol. 27: 33-37. https://doi.org/10.1016/j.nbt.2009.09.002
  18. Kumar, B. and A. R. Rao. 2009. Oxygen transfer and energy dissipation rate in surface aerator. Bioresour. Technol. 100: 2886-2888. https://doi.org/10.1016/j.biortech.2008.12.031
  19. Kumar, B., A. K. Patel, and A. R. Rao. 2010. Shape effect on optimal geometric conditions in surface aeration systems. Korean J. Chem. Eng. 27: 159-162. https://doi.org/10.1007/s11814-009-0302-8
  20. Kweon, S. H., Y. W. Ryu, and J. H. Seo. 1993. Determination of optimum conditions for xylose fermentation by Pichia stipitis. Korean J. Biotechnol. Bioeng. 8: 452-456.
  21. Ligthelm, M. E., B. A. Prior, and J. C. du Preez. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68. https://doi.org/10.1007/BF00250500
  22. Lo, C. K., C. P. Pan, and W. H. Liu. 2002. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J. Ind. Microbiol. Biotechnol. 28: 280-283. https://doi.org/10.1038/sj.jim.7000243
  23. Maleszka, R. and H. Schneider. 1982. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl. Environ. Microbiol. 44: 909-912.
  24. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  25. Panchal, C. J., L. Bast, L. Russell, and G. Stewart. 1988. Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can. J. Microbiol. 34: 1316-1320. https://doi.org/10.1139/m88-230
  26. Rao, A. R. and B. Kumar. 2008. Design considerations and economics of different shaped surface aeration tanks. Korean J. Chem. Eng. 25: 1338-1343. https://doi.org/10.1007/s11814-008-0219-7
  27. Robyt, J. F and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  28. Sanchez, S., V. Bravo, E. Castro, A. J. Moya, and F. Camacho. 1977. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Enzyme Microb. Technol. 21: 355-360.
  29. Sedlak, M. and N. W. Y. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
  30. Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung. 2009. Highlevel production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
  31. Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 292-297. 2nd Ed. Prentice-Hall Inc., New Jersey.
  32. Sun, H., Z.-S. Mao, and G. Yu. 2006. Experimental and numerical study of gas hold-up in surface aerated stirred tanks. Chem. Eng. Sci. 61: 4098-4110. https://doi.org/10.1016/j.ces.2005.12.029
  33. Vasudevan, P. T. and M. Briggs. 2008. Biodiesel production, current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35: 421-430. https://doi.org/10.1007/s10295-008-0312-2
  34. Yang, Z., B. Zhang, X. Chen, Z. Bai, and H. Zhang. 2008. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J. Anal. Appl. Pyrolysis 81: 243-246. https://doi.org/10.1016/j.jaap.2007.12.001
  35. Yuan, J. S., K. H. Tiller, H. Al-Ahmad, N. R. Stewart, and C. N. Stewart Jr. 2008. Plants to power: Bioenergy to fuel the future. Trends Plant Sci. 13: 421-429. https://doi.org/10.1016/j.tplants.2008.06.001
  36. Zhang, Q., C.-M. Lo, and L.-K. Ju. 2007. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresour. Technol. 98: 753-760. https://doi.org/10.1016/j.biortech.2006.04.006

Cited by

  1. Pichia stipitis를 이용한 모자반 가수분해물로부터의 bioethanol 생산 시 최적 surface aeration rate vol.26, pp.4, 2011, https://doi.org/10.7841/ksbbj.2011.26.4.311
  2. 효모 Pichia stipitis를 이용한 구멍갈파래 가수분해 추출물로 부터 바이오 에탄올 생산 vol.39, pp.3, 2011, https://doi.org/10.4489/kjm.2010.39.3.243
  3. Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation vol.22, pp.1, 2011, https://doi.org/10.4014/jmb.1106.06019
  4. 에탄올 생산을 위한 효모 Pichia stipitis의 고정화 vol.22, pp.4, 2011, https://doi.org/10.5352/jls.2012.22.4.508
  5. Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2011, https://doi.org/10.4014/jmb.1304.04014
  6. Recent advances in liquid biofuel production from algal feedstocks vol.102, pp.None, 2011, https://doi.org/10.1016/j.apenergy.2012.07.031
  7. Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산 vol.23, pp.7, 2011, https://doi.org/10.5352/jls.2013.23.7.886
  8. Effect of Water Depth on Seasonal Variation in the Chemical Composition of Akamoku, <i>Sargassum horneri</i> (Turner) C. Agardh vol.7, pp.4, 2016, https://doi.org/10.4236/nr.2016.74015
  9. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities vol.15, pp.12, 2011, https://doi.org/10.3390/md15120388
  10. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae vol.125, pp.2, 2011, https://doi.org/10.1111/jam.13886
  11. Enzymatic Saccharification of Laminaria japonica by Cellulase for the Production of Reducing Sugars vol.13, pp.3, 2011, https://doi.org/10.3390/en13030763