Browse > Article
http://dx.doi.org/10.4014/jmb.1008.08001

Bioethanol Production from the Hydrolysate of Rape Stem in a Surface-Aerated Fermentor  

Yeon, Ji-Hyeon (Department of Biotechnology, Chungju National University)
Lee, Sang-Eun (Department of Biotechnology, Chungju National University)
Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Choi, Won-Seok (Department of Food Science and Technology, Chungju National University)
Kim, Il-Chul (Department of Biological Sciences, Chonnam National University)
Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 109-114 More about this Journal
Abstract
In this study, we investigated the feasibility of producing bioethanol from the hydrolysate of rape stem. Specifically, the most ideal yeast strain was screened, and the microaeration was performed by surface aeration on a liquid medium surface. Among the yeast strains examined, Pichia stipitis CBS 7126 displayed the best performance in bioethanol production during the surface-aerated fermentor culture. Pichia stipitis CBS 7126 produced maximally 9.56 g/l of bioethanol from the initial total reducing sugars (about 28 g/l). The bioethanol yield was 0.397 (by the DNS method). Furthermore, this controlled surface aeration method holds promise for use in the bioethanol production from the xylose-containing lignocellulosic hydrolysate of biomass.
Keywords
Surface aeration; hydrolysate of rape stem; bioethanol; Pichia stipitis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Yang, Z., B. Zhang, X. Chen, Z. Bai, and H. Zhang. 2008. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J. Anal. Appl. Pyrolysis 81: 243-246.   DOI   ScienceOn
2 Yuan, J. S., K. H. Tiller, H. Al-Ahmad, N. R. Stewart, and C. N. Stewart Jr. 2008. Plants to power: Bioenergy to fuel the future. Trends Plant Sci. 13: 421-429.   DOI   ScienceOn
3 Zhang, Q., C.-M. Lo, and L.-K. Ju. 2007. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresour. Technol. 98: 753-760.   DOI   ScienceOn
4 Sanchez, S., V. Bravo, E. Castro, A. J. Moya, and F. Camacho. 1977. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Enzyme Microb. Technol. 21: 355-360.
5 Sedlak, M. and N. W. Y. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116: 403-416.
6 Vasudevan, P. T. and M. Briggs. 2008. Biodiesel production, current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35: 421-430.   DOI   ScienceOn
7 Seo, H.-B., S. S. Kim, H.-Y. Lee, and K.-H. Jung. 2009. Highlevel production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598.   DOI
8 Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 292-297. 2nd Ed. Prentice-Hall Inc., New Jersey.
9 Sun, H., Z.-S. Mao, and G. Yu. 2006. Experimental and numerical study of gas hold-up in surface aerated stirred tanks. Chem. Eng. Sci. 61: 4098-4110.   DOI   ScienceOn
10 Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.   DOI   ScienceOn
11 Ligthelm, M. E., B. A. Prior, and J. C. du Preez. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63-68.   DOI
12 Panchal, C. J., L. Bast, L. Russell, and G. Stewart. 1988. Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can. J. Microbiol. 34: 1316-1320.   DOI
13 Rao, A. R. and B. Kumar. 2008. Design considerations and economics of different shaped surface aeration tanks. Korean J. Chem. Eng. 25: 1338-1343.   DOI   ScienceOn
14 Robyt, J. F and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202.   DOI
15 Kumar, B. and A. R. Rao. 2009. Oxygen transfer and energy dissipation rate in surface aerator. Bioresour. Technol. 100: 2886-2888.   DOI   ScienceOn
16 Lo, C. K., C. P. Pan, and W. H. Liu. 2002. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J. Ind. Microbiol. Biotechnol. 28: 280-283.   DOI   ScienceOn
17 Maleszka, R. and H. Schneider. 1982. Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose. Appl. Environ. Microbiol. 44: 909-912.
18 Kim, B. S., H.-R. Kim, and C. T. Hou. 2010. Effect of surfactant on the production of oxygenated unsaturated fatty acids by Bacillus megaterium ALA2. New Biotechnol. 27: 33-37.   DOI   ScienceOn
19 Kweon, S. H., Y. W. Ryu, and J. H. Seo. 1993. Determination of optimum conditions for xylose fermentation by Pichia stipitis. Korean J. Biotechnol. Bioeng. 8: 452-456.
20 Kumar, B., A. K. Patel, and A. R. Rao. 2010. Shape effect on optimal geometric conditions in surface aeration systems. Korean J. Chem. Eng. 27: 159-162.   DOI   ScienceOn
21 Jeppsson, M., B. Johansson, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68: 1604-1609.   DOI   ScienceOn
22 Gaspar, M., G. Kalman, and K. Reczey. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42: 1135-1139.   DOI   ScienceOn
23 Jin, Y.-S, T.-H. Lee, Y.-D. Choi, Y.-W. Ryu, and J.-H. Seo. 2000. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J. Microbiol. Biotechnol. 10: 564-567.
24 Kamoshita, Y., R. Ohashi, and T. Suzuki. 1998. A dense cell culture system for aerobic microorganisms using a shaken ceramic membrane flask with surface aeration. J. Ferment. Bioeng. 85: 218-222.   DOI   ScienceOn
25 Karimi, K., G. Emtiazi, and M. J. Taherzadeh. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40: 138-144.   DOI   ScienceOn
26 Delgenes, J. P., R. Moletta, and J. M. Navarro. 1989. Fermentation of D-xylose, D-glucose, L-arabinose mixture by Pichia stipitis: Effect of the oxygen transfer rate on fermentation performance. Biotechnol. Bioeng. 34: 398-402.   DOI   ScienceOn
27 du Preez, J. C. and J. P. van der Walt. 1983. Fermentation of Dxylose to ethanol by a strain of Candida shehatae. Biotechnol. Lett. 5: 357-362.   DOI   ScienceOn
28 Gressel, J. 2008. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246-263.   DOI   ScienceOn
29 Han, J. G., S.-H. Oh, M.-H. Jeong, S.-S. Kim, H.-B. Seo, K.-H. Jung, Y.-S. Jang, I.-C. Kim, and H.-Y. Lee. 2009. Two-step high temperature pretreatment process for bioethanol production from rape stems. KSBB J. 24: 489-494.
30 Huang, C.-L, Y.-R. Chen, and W.-H. Liu. 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol. 39: 296-300.   DOI   ScienceOn
31 Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326.   DOI   ScienceOn
32 Jeong, G. T., D. H. Park, C. H. Kang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, et al. 2004. Production of biodiesel fuel by transesterification of rapeseed oil. Appl. Biochem. Biotechnol. 113-116: 747-758.
33 Jeong, G. T. and D. H. Park. 2006. Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. Appl. Biochem. Biotechnol. 131: 668-679.   DOI
34 Converti, A., P. Perego, and J. M. Dominguez. 1999. Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol. Lett. 21: 719-723.   DOI   ScienceOn
35 Atkinson, B. and F. Mavituna. 1983. Biochemical Engineering and Biotechnology Handbook pp. 772-773. The Nature Press.
36 Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach, pp. 3. IRL Press, Oxford.