DOI QR코드

DOI QR Code

Validation of a Real-Time RT-PCR Method to Quantify Newcastle Disease Virus (NDV) Titer and Comparison with Other Quantifiable Methods

  • Jang, Juno (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Sung-Hwan (Bio Team II, Hanmi Research Center) ;
  • Kim, Ik-Hwan (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University)
  • Received : 2010.06.03
  • Accepted : 2010.10.26
  • Published : 2011.01.28

Abstract

A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 ($TCID_{50}$) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.

Keywords

References

  1. Alexander, D. J. 2000. Newcastle disease and other avian paramyxoviruses. Rev. Sci. Tech. 19: 443-462. https://doi.org/10.20506/rst.19.2.1231
  2. Alexander, D. J. 2008. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, pp. 576-589. Office International des Epizooties.
  3. Altman, S. A., L. Randers, and G. Rao. 1993. Comparison of trypan blue-dye exclusion and fluorometric assays for mammalian-cell viability determinations. Biotechnol. Prog. 9: 671-674. https://doi.org/10.1021/bp00024a017
  4. Beard, C. W. and R. P. Hanson. 1984. Newcastle disease, pp. 452-470. In M. S. Hofstad (ed.). Disease of Poultry. Iowa State University Press, Ames, IA.
  5. Burleson, F. G., T. M. Chambers, and D. L. Wiedbrauk. 1992. Virology: A Laboratory Manual, pp. 53-97. Academic Press, Inc., San Diego, CA.
  6. de Leeuw, O. S., G. Koch, L. Hartog, N. Ravenshorst, and B. P. Peeters. 2005. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutininneuraminidase protein. J. Gen. Virol. 86: 1759-1769. https://doi.org/10.1099/vir.0.80822-0
  7. DiNapoli, J. M., A. Kotelkin, L. Yang, S. Elankumaran, B. R. Murphy, S. K. Samal, P. L. Collins, and A. Bukreyev. 2007. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc. Natl. Acad. Sci. USA 104: 9788-9793. https://doi.org/10.1073/pnas.0703584104
  8. Dresch, M. T., S. B. Rossato, V. D. Kappel, R. Biegelmeyer, M. L. Hoff, P. Mayorga, J. A. Zuanazzi, A. T. Henriques, and J. C. Moreira. 2009. Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal. Biochem. 385: 107-114. https://doi.org/10.1016/j.ab.2008.10.036
  9. Eaton, B. T., C. C. Broder, D. Middleton, and L. F. Wang. 2006. Hendra and Nipah viruses: Different and dangerous. Nat. Rev. Microbiol. 4: 23-35. https://doi.org/10.1038/nrmicro1323
  10. Fuller, C. M., M. S. Collins, and D. J. Alexander. 2009. Development of a real-time reverse-transcription PCR for the detection and simultaneous pathotyping of Newcastle disease virus isolates using a novel probe. Arch. Virol. 154: 929-937. https://doi.org/10.1007/s00705-009-0391-z
  11. Ge, J., G. Deng, Z. Wen, G. Tian, Y. Wang, J. Shi, et al. 2007. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologousand heterologous H5N1 avian influenza viruses. J. Virol. 81: 150-158. https://doi.org/10.1128/JVI.01514-06
  12. Guan, J., M. Chan, B. Ma, C. Grenier, D. C. Wilkie, J. Pasick, B. W. Brooks, and J. L. Spencer. 2008. Development of methods for detection and quantification of avian influenza and Newcastle disease viruses in compost by real-time reverse transcription polymerase chain reaction and virus isolation. Poult. Sci. 87: 838-843. https://doi.org/10.3382/ps.2007-00195
  13. Harper, D. R. 1989. A novel plaque assay system for paramyxoviruses. J. Virol. Methods 25: 347-350. https://doi.org/10.1016/0166-0934(89)90061-X
  14. Huang, Z., S. Krishnamurthy, A. Panda, and S. K. Samal. 2003. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 77: 8676-8685. https://doi.org/10.1128/JVI.77.16.8676-8685.2003
  15. Huang, Z., A. Panda, S. Elankumaran, D. Govindarajan, D. D. Rockemann, and S. K. Samal. 2004. The hemagglutininneuraminidase protein of Newcastle disease virus determines tropism and virulence. J. Virol. 78: 4176-4184. https://doi.org/10.1128/JVI.78.8.4176-4184.2004
  16. Kattenbelt, J. A., M. P. Stevens, and A. R. Gould. 2006. Sequence variation in the Newcastle disease virus genome. Virus Res. 116: 168-184. https://doi.org/10.1016/j.virusres.2005.10.001
  17. Ke, G. M., H. L. Cheng, L. Y. Ke, W. T. Ji, J. L. Chulu, M. H. Liao, T. J. Chang, and H. J. Liu. 2006. Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus. J. Virol. Methods 133: 6-13. https://doi.org/10.1016/j.jviromet.2005.09.011
  18. Kournikakis, B. and J. Fildes. 1988. Titration of avirulent Newcastle disease virus by the plaque assay method. J. Virol. Methods 20: 285-293. https://doi.org/10.1016/0166-0934(88)90132-2
  19. Pantua, H. D., L. W. McGinnes, M. E. Peeples, and T. G. Morrison. 2006. Requirements for the assembly and release of Newcastle disease virus-like particles. J. Virol. 80: 11062-11073. https://doi.org/10.1128/JVI.00726-06
  20. Peeters, B. P., O. S. de Leeuw, G. Koch, and A. L. Gielkens. 1999. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 73: 5001-5009.
  21. Pham, H. M., S. Konnai, T. Ushi, K. S. Chang, S. Murata, M. Mase, K. Ohashi, and M. Onuma. 2005. Rapid detecion and differentiation of Newcastle disease virus by real-time PCR with melting-curve analysis. Arch. Virol. 150: 2429-2438. https://doi.org/10.1007/s00705-005-0603-0
  22. Puhler, F., J. Willuda, J. Puhlmann, D. Mumberg, A. Romer-Oberdorfer, and R. Beier. 2008. Generation of a recombinant oncolytic Newcastle disease virus and expression of a full IgG antibody from two transgenes. Gene Ther. 15: 371-383. https://doi.org/10.1038/sj.gt.3303095
  23. Rout, S. N. and S. K. Samal. 2008. The large polymerase protein is associated with the virulence of Newcastle disease virus. J. Virol. 82: 7828-7836. https://doi.org/10.1128/JVI.00578-08
  24. Santhosh, S. R., M. M. Parida, P. K. Dash, A. Pateriya, B. Pattnaik, H. K. Pradhan, et al. 2007. Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantitation of Japanese encephalitis virus. J. Virol. Methods 143: 73-80. https://doi.org/10.1016/j.jviromet.2007.02.011
  25. Shankar, G., M. S. Fourrier, M. A. Grevenkamp, and P. A. Lodge. 2004. Validation of the COSTIM bioassay for dendritic cell potency. J. Pharm. Biomed. Anal. 36: 285-294. https://doi.org/10.1016/j.jpba.2004.05.025
  26. Sinkovics, G. J. and J. C. Horvath. 2000. Newcastle disease virus (NDV): Brief history of its oncolytic strains. J. Clin. Virol. 16: 1-15.
  27. Song, M. K., J. Chang, Y. Hong, S. Hong, and S. W. Kim. 2009. Direct multiplex reverse transcription-nested PCR detection of influenza viruses without RNA purification. J. Microbiol. Biotechnol. 19: 1470-1474.
  28. Tan, S. W., A. R. Omar, I. Aini, K. Yusoff, and W. S. Tan. 2004. Detection of Newcastle disease virus using a SYBR Green I real-time polymerase chain reaction. Acta Virol. 48: 23-28.
  29. Wakamatsu, N., D. J. King, B. S. Seal, B. P. Peeters, and C. C. Brown. 2006. The effect on pathogenesis of Newcastle disease virus LaSota strain from a muation of the fusion cleavage site to a virulent sequence. Avian Dis. 50: 483-488. https://doi.org/10.1637/7515-020706R.1
  30. Wise, M. G., D. L. Suarez, B. S. Seal, J. C. Pedersen, D. A. Senne, D. J. King, D. R. Kapczynski, and E. Spackman. 2004. Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 42: 329-338. https://doi.org/10.1128/JCM.42.1.329-338.2004
  31. Yang, Z. Y., W. P. Kong, Y. Huang, A. Roberts, B. R. Murphy, K. Subbarao, and G. J. Nabel. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561-564. https://doi.org/10.1038/nature02463

Cited by

  1. Expression of genes implicated in oxidative stress in the cochlea of newborn rats vol.277, pp.1, 2011, https://doi.org/10.1016/j.heares.2011.03.011
  2. Inhibition of Newcastle Disease Virus Replication by Lentivirus-Mediated RNA Interference vol.57, pp.2, 2013, https://doi.org/10.1637/10468-121612-reg.1
  3. 생물의약품 제조 공정에서 Porcine transmissible gastroenteritis virus 정량 검출을 위한 TaqMan Probe Real-Time RT-PCR 개발 vol.43, pp.3, 2011, https://doi.org/10.4014/mbl.1508.08001
  4. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt vol.28, pp.2, 2017, https://doi.org/10.1007/s13337-017-0367-7
  5. Evaluation of the Viral Interference between Lentogenic Newcastle Disease Virus (Lasota) and Avian Influenza Virus (H9N2) using Real-Time Reverse Transcription Polymerase Chain Reaction in SPF Chicken vol.20, pp.3, 2018, https://doi.org/10.1590/1806-9061-2017-0717
  6. Newcastle disease virus-attenuated vaccine LaSota played a key role in the pathogenicity of contaminated exogenous virus vol.49, pp.None, 2011, https://doi.org/10.1186/s13567-018-0577-z
  7. A novel mutation tolerant padlock probe design for multiplexed detection of hypervariable RNA viruses vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-39854-3
  8. Establishment of reverse transcription recombinase–aided amplification-lateral-flow dipstick and real-time fluorescence–based reverse transcription recombinase–aided amplification vol.99, pp.7, 2011, https://doi.org/10.1016/j.psj.2020.03.018
  9. Research Note: A putative novel subtype of the avian hepatitis E virus of genotype 3, Jiangxi province, China vol.99, pp.12, 2011, https://doi.org/10.1016/j.psj.2020.09.083
  10. Newcastle disease vaccine virus I-2 fails to acquire virulence during repeated passage in vivo vol.5, pp.None, 2021, https://doi.org/10.12688/gatesopenres.13212.3
  11. Genetic characterization and pathogenicity of a divergent broiler‐origin orthoreovirus causing arthritis in China vol.68, pp.6, 2011, https://doi.org/10.1111/tbed.13961