DOI QR코드

DOI QR Code

Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling

  • Kang, Dae-Jung (Department of Bioscience and Biotechnology, Kon-Kuk University) ;
  • Kim, Ji-Young (Department of Bioscience and Biotechnology, Kon-Kuk University) ;
  • Choi, Jung-Nam (Department of Bioscience and Biotechnology, Kon-Kuk University) ;
  • Liu, Kwang-Hyeon (Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine) ;
  • Lee, Choong-Hwan (Department of Bioscience and Biotechnology, Kon-Kuk University)
  • Received : 2010.08.17
  • Accepted : 2010.09.28
  • Published : 2011.01.28

Abstract

In this study, seven Trichoderma species (33 strains) were classified using secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. T. longibrachiatum and T. virens were independently clustered based on both internal transcribed spacer (ITS) sequence and secondary metabolite analyses. T. harzianum formed three subclusters in the ITS-based phylogenetic tree and two subclusters in the metabolitebased dendrogram. In contrast, T. koningii and T. atroviride strains were mixed in one cluster in the phylogenetic tree, whereas T. koningii was grouped in a different subcluster from T. atroviride and T. hamatum in the chemotaxonomic tree. Partial least-squares discriminant analysis (PLS-DA) was applied to determine which metabolites were responsible for the clustering patterns observed for the different Trichoderma strains. The metabolites were hetelidic acid, sorbicillinol, trichodermanone C, giocladic acid, bisorbicillinol, and three unidentified compounds in the comparison of T. virens and T. longibrachiatum; harzianic acid, demethylharzianic acid, homoharzianic acid, and three unidentified compounds in T. harzianum I and II; and koninginin B, E, and D, and six unidentified compounds in T. koningii and T. atroviride. The results of this study demonstrate that secondary metabolite profiling-based chemotaxonomy has distinct advantages relative to ITS-based classification, since it identified new Trichoderma clusters that were not found using the latter approach.

Keywords

References

  1. Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol. Biosci. Biotechnol. Biochem. 62: 661-666. https://doi.org/10.1271/bbb.62.661
  2. Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2001. Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 65: 2271-2279. https://doi.org/10.1271/bbb.65.2271
  3. Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2000. Identification of the quinol metabolite sorbicillinol, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 122: 12606-12607. https://doi.org/10.1021/ja003013l
  4. Degenkolb, T., H. V. Dohren, N. F. Nielsen, G. J. Samuels, and H. Bruckner. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671-680. https://doi.org/10.1002/cbdv.200890064
  5. Druzhinina, I. S., A. G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs, and C. P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813-828. https://doi.org/10.1016/j.fgb.2005.06.007
  6. Druzhinina, I. S., A. G. Kopchinskiy, and C. P. Kubicek. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47: 55-64. https://doi.org/10.1007/s10267-006-0279-7
  7. Dunlop, R. W., A. Simon, and K. Sivasithamparam. 1989. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 52: 67-74. https://doi.org/10.1021/np50061a008
  8. Frisvad, J. C., B. Andersen, and U. Thrane. 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 112: 231-240. https://doi.org/10.1016/j.mycres.2007.08.018
  9. Hoyos-Carvajal, L., S. Orduz, and J. Bissett, 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol. 46: 615-631. https://doi.org/10.1016/j.fgb.2009.04.006
  10. Itoh, Y., K. Kodama, K. Furuya, S. Takahashi, T. Haneishi, Y. Takiguchi, and M. Arai. 1980. A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J. Antibiot. 33: 468-473. https://doi.org/10.7164/antibiotics.33.468
  11. Kawada, M., Y. Yoshimoto, H. Kumagai, T. Someno, I. Momose, N. Kawamura, K. Isshiki, and D. Ikeda. 2004. PP2A inhibitors harzianic acid and related compounds produced by fungus strain F-1531. J. Antibiot. 57: 235-237. https://doi.org/10.7164/antibiotics.57.235
  12. Kim, J., J. N. Choi, P. Kim, D. E. Sok, S. W. Nam, and C. H. Lee. 2009. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus. J. Microbiol. Biotechnol. 19: 51-54.
  13. Kubicek, C. P., J. Bissett, I. Druzhinina, C. Kulling-Grandinger, and G. Szakacs. 2003. Genetic and metabolic diversity of Trichoderma: A case study on South-East Asian isolates. Fungal Genet. Biol. 38: 310-319. https://doi.org/10.1016/S1087-1845(02)00583-2
  14. Kullnig, C. M., T. Krupica, S. L. Woo, R. L. Mach, M. Rey, T. Benifez, M. Lorito, and C. P. Kubicek. 2001. Confusion abounds over identities of Trichoderma of biocontrol isolates. Mycol. Res. 105: 769-772. https://doi.org/10.1017/S0953756201219960
  15. Lommen, A. 2009. Metalign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086. https://doi.org/10.1021/ac900036d
  16. Lubeck, M., S. Bulat, I. Alekhina, and E. Lieckfeldt. 2004. Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridizaion. FEMS Microbiol. Lett. 237: 255-260.
  17. Neumann, K., A. Abdel-Lateff, A. D. Wright, S. Kehraus, A. Krick, and G. M. Konig. 2007. Novel sorbicillin derivatives with an unprecedented carbon skeleton from the sponge-derived fungus Trichoderma species. Eur. J. Org. Chem. 14: 2268-2275.
  18. Nielsen, K. F., T. Grafenhan, D. Zarari, and U. Thrane. 2005. Trichothecene production by Trichoderma brevicompactum. J. Agric. Food Chem. 53: 8190-8196. https://doi.org/10.1021/jf051279b
  19. Parker, S. R., H. G. Cutler, and P. R. Schreiner. 1995. Isolation of a biologically active natural product from Trichoderma koningii. Biosci. Biotechnol. Biochem. 59: 1747-1749. https://doi.org/10.1271/bbb.59.1747
  20. Pope, G. A., D. A. MacKenzie, M. Defernez, M. A. M. M. Aroso, L. J. Fuller, F. A. Mellon, et al. 2007. Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24: 667-679. https://doi.org/10.1002/yea.1499
  21. Respinis, S. D., G. Vogel, C. Benagli, M. Tonolla, O. Petrini, and G. J. Samuels. 2010. MALDI-TOF MS of Trichoderma: Model system for the identification of microfungi. Mycol. Progress 9: 79-100. https://doi.org/10.1007/s11557-009-0621-5
  22. Singh, H. B. and D. P. Singh. 2009. From biological control to bioactive metabolites: Prospects with Trichoderma for safe human food. J. Trop. Agric. Sci. 32: 99-110.
  23. Smedsgaard, J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J. Chromatogr. A 760: 264-270. https://doi.org/10.1016/S0021-9673(96)00803-5
  24. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Thrane, U., S. B. Poulsen, H. I. Nirenberg, and E. Lieckfeldt. 2001. Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol. Lett. 203: 249-255. https://doi.org/10.1111/j.1574-6968.2001.tb10849.x
  26. Vinale, F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, M. J. Babetti, H. Li, S. L. Woo, and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72: 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005
  27. Vinale, F., R. Marra, F. Scala, E. L. Ghisalberti, M. Lorito, and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143-148. https://doi.org/10.1111/j.1472-765X.2006.01939.x
  28. Vinale, F., G. Flematti, K. Sivasithamparam, M. Lorito, R. Marra, B. W. Skelton, and E. L. Ghisaberti. 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032-2035. https://doi.org/10.1021/np900548p

Cited by

  1. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update) vol.10, pp.12, 2012, https://doi.org/10.2903/j.efsa.2012.3020
  2. Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin vol.23, pp.7, 2013, https://doi.org/10.4014/jmb.1212.12068
  3. Metabolomic analysis provides novel chemotaxonomic characteristics for phenotypic cultivars of tree peony vol.6, pp.19, 2011, https://doi.org/10.1039/c4ay01028k
  4. Oxygenated lanostane-type triterpenes profiling in laccate Ganoderma chemotaxonomy vol.14, pp.7, 2015, https://doi.org/10.1007/s11557-015-1066-7
  5. Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi vol.87, pp.24, 2011, https://doi.org/10.1021/acs.analchem.5b03614
  6. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger , Aspergillus oryzae , and Trichoderma reesei vol.102, pp.22, 2018, https://doi.org/10.1007/s00253-018-9354-1
  7. Metabolomics Analysis of the Effect of Glutamic Acid on Monacolin K Synthesis in Monascus purpureus vol.11, pp.None, 2011, https://doi.org/10.3389/fmicb.2020.610471
  8. Rapid classification of chromoblastomycosis agents genera by infrared spectroscopy and chemometrics supervised by sequencing of rDNA regions vol.254, pp.None, 2011, https://doi.org/10.1016/j.saa.2021.119647
  9. The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds vol.26, pp.13, 2011, https://doi.org/10.3390/molecules26133959