References
- Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol. Biosci. Biotechnol. Biochem. 62: 661-666. https://doi.org/10.1271/bbb.62.661
- Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2001. Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 65: 2271-2279. https://doi.org/10.1271/bbb.65.2271
- Abe, N., O. Sugimoto, K. I. Tanji, and A. Hirota. 2000. Identification of the quinol metabolite sorbicillinol, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 122: 12606-12607. https://doi.org/10.1021/ja003013l
- Degenkolb, T., H. V. Dohren, N. F. Nielsen, G. J. Samuels, and H. Bruckner. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671-680. https://doi.org/10.1002/cbdv.200890064
- Druzhinina, I. S., A. G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs, and C. P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813-828. https://doi.org/10.1016/j.fgb.2005.06.007
- Druzhinina, I. S., A. G. Kopchinskiy, and C. P. Kubicek. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47: 55-64. https://doi.org/10.1007/s10267-006-0279-7
- Dunlop, R. W., A. Simon, and K. Sivasithamparam. 1989. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 52: 67-74. https://doi.org/10.1021/np50061a008
- Frisvad, J. C., B. Andersen, and U. Thrane. 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 112: 231-240. https://doi.org/10.1016/j.mycres.2007.08.018
- Hoyos-Carvajal, L., S. Orduz, and J. Bissett, 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol. 46: 615-631. https://doi.org/10.1016/j.fgb.2009.04.006
- Itoh, Y., K. Kodama, K. Furuya, S. Takahashi, T. Haneishi, Y. Takiguchi, and M. Arai. 1980. A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J. Antibiot. 33: 468-473. https://doi.org/10.7164/antibiotics.33.468
- Kawada, M., Y. Yoshimoto, H. Kumagai, T. Someno, I. Momose, N. Kawamura, K. Isshiki, and D. Ikeda. 2004. PP2A inhibitors harzianic acid and related compounds produced by fungus strain F-1531. J. Antibiot. 57: 235-237. https://doi.org/10.7164/antibiotics.57.235
- Kim, J., J. N. Choi, P. Kim, D. E. Sok, S. W. Nam, and C. H. Lee. 2009. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus. J. Microbiol. Biotechnol. 19: 51-54.
- Kubicek, C. P., J. Bissett, I. Druzhinina, C. Kulling-Grandinger, and G. Szakacs. 2003. Genetic and metabolic diversity of Trichoderma: A case study on South-East Asian isolates. Fungal Genet. Biol. 38: 310-319. https://doi.org/10.1016/S1087-1845(02)00583-2
- Kullnig, C. M., T. Krupica, S. L. Woo, R. L. Mach, M. Rey, T. Benifez, M. Lorito, and C. P. Kubicek. 2001. Confusion abounds over identities of Trichoderma of biocontrol isolates. Mycol. Res. 105: 769-772. https://doi.org/10.1017/S0953756201219960
- Lommen, A. 2009. Metalign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086. https://doi.org/10.1021/ac900036d
- Lubeck, M., S. Bulat, I. Alekhina, and E. Lieckfeldt. 2004. Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridizaion. FEMS Microbiol. Lett. 237: 255-260.
- Neumann, K., A. Abdel-Lateff, A. D. Wright, S. Kehraus, A. Krick, and G. M. Konig. 2007. Novel sorbicillin derivatives with an unprecedented carbon skeleton from the sponge-derived fungus Trichoderma species. Eur. J. Org. Chem. 14: 2268-2275.
- Nielsen, K. F., T. Grafenhan, D. Zarari, and U. Thrane. 2005. Trichothecene production by Trichoderma brevicompactum. J. Agric. Food Chem. 53: 8190-8196. https://doi.org/10.1021/jf051279b
- Parker, S. R., H. G. Cutler, and P. R. Schreiner. 1995. Isolation of a biologically active natural product from Trichoderma koningii. Biosci. Biotechnol. Biochem. 59: 1747-1749. https://doi.org/10.1271/bbb.59.1747
- Pope, G. A., D. A. MacKenzie, M. Defernez, M. A. M. M. Aroso, L. J. Fuller, F. A. Mellon, et al. 2007. Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24: 667-679. https://doi.org/10.1002/yea.1499
- Respinis, S. D., G. Vogel, C. Benagli, M. Tonolla, O. Petrini, and G. J. Samuels. 2010. MALDI-TOF MS of Trichoderma: Model system for the identification of microfungi. Mycol. Progress 9: 79-100. https://doi.org/10.1007/s11557-009-0621-5
- Singh, H. B. and D. P. Singh. 2009. From biological control to bioactive metabolites: Prospects with Trichoderma for safe human food. J. Trop. Agric. Sci. 32: 99-110.
- Smedsgaard, J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J. Chromatogr. A 760: 264-270. https://doi.org/10.1016/S0021-9673(96)00803-5
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Thrane, U., S. B. Poulsen, H. I. Nirenberg, and E. Lieckfeldt. 2001. Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol. Lett. 203: 249-255. https://doi.org/10.1111/j.1574-6968.2001.tb10849.x
- Vinale, F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, M. J. Babetti, H. Li, S. L. Woo, and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72: 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005
- Vinale, F., R. Marra, F. Scala, E. L. Ghisalberti, M. Lorito, and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143-148. https://doi.org/10.1111/j.1472-765X.2006.01939.x
- Vinale, F., G. Flematti, K. Sivasithamparam, M. Lorito, R. Marra, B. W. Skelton, and E. L. Ghisaberti. 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032-2035. https://doi.org/10.1021/np900548p
Cited by
- Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update) vol.10, pp.12, 2012, https://doi.org/10.2903/j.efsa.2012.3020
- Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin vol.23, pp.7, 2013, https://doi.org/10.4014/jmb.1212.12068
- Metabolomic analysis provides novel chemotaxonomic characteristics for phenotypic cultivars of tree peony vol.6, pp.19, 2011, https://doi.org/10.1039/c4ay01028k
- Oxygenated lanostane-type triterpenes profiling in laccate Ganoderma chemotaxonomy vol.14, pp.7, 2015, https://doi.org/10.1007/s11557-015-1066-7
- Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi vol.87, pp.24, 2011, https://doi.org/10.1021/acs.analchem.5b03614
- Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger , Aspergillus oryzae , and Trichoderma reesei vol.102, pp.22, 2018, https://doi.org/10.1007/s00253-018-9354-1
- Metabolomics Analysis of the Effect of Glutamic Acid on Monacolin K Synthesis in Monascus purpureus vol.11, pp.None, 2011, https://doi.org/10.3389/fmicb.2020.610471
- Rapid classification of chromoblastomycosis agents genera by infrared spectroscopy and chemometrics supervised by sequencing of rDNA regions vol.254, pp.None, 2011, https://doi.org/10.1016/j.saa.2021.119647
- The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds vol.26, pp.13, 2011, https://doi.org/10.3390/molecules26133959