DOI QR코드

DOI QR Code

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans

  • Mo, Hongyu (College of Biology, Hunan University) ;
  • Chen, Qian (College of Biology, Hunan University) ;
  • Du, Juan (College of Biology, Hunan University) ;
  • Tang, Lin (College of Biology, Hunan University) ;
  • Qin, Fang (College of Biology, Hunan University) ;
  • Miao, Bo (Department of Bioengineering, Central South University) ;
  • Wu, Xueling (Department of Bioengineering, Central South University) ;
  • Zeng, Jia (College of Biology, Hunan University)
  • 투고 : 2011.01.14
  • 심사 : 2011.03.11
  • 발행 : 2011.05.28

초록

The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.

키워드

참고문헌

  1. Agarwal, R., J. B. Bonanno, S. K. Burley, and S. Swaminathan 2006. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Cryst. D62: 383-391.
  2. Butcher, B. G., S. M. Deane, and D. E. Rawlings. 2000. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66: 1826-1833. https://doi.org/10.1128/AEM.66.5.1826-1833.2000
  3. Butcher, B. G. and D. E. Rawlings. 2002. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148: 3983-3992.
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Coves, J. and M. Fontecave. 1993. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli. Eur. J. Biochem. 211: 635-641. https://doi.org/10.1111/j.1432-1033.1993.tb17591.x
  6. Dancis, A., D. G. Roman, G. J. Anderson, A. G. Hinnebusch, and R. D. Klauser. 1992. Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89: 3869-3873. https://doi.org/10.1073/pnas.89.9.3869
  7. Filisetti, L., J. Valton, M. Fontecave, and V. Niviere. 2005. The flavin reductase ActVB from Streptomyces coelicolor: Characterization of the electron transferase activity of the flavoprotein form. FEBS Lett. 579: 2817-2820. https://doi.org/10.1016/j.febslet.2005.04.019
  8. Lopez-Maury, L., F. J. Florencio, and J. C. Reyes. 2003. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185: 5363- 5371. https://doi.org/10.1128/JB.185.18.5363-5371.2003
  9. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  10. Liger, D., M. Graille, C. Z. Zhou, N. Leulliot, S. Quevillon- Cheruel, K. Blondeau, J. Janin, and H. van Tilbeurgh. 2004. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J. Biol. Chem. 279: 34890-34897. https://doi.org/10.1074/jbc.M405404200
  11. Mukhopadhyay, R., B. P. Rosen, L. T. Phung, and S. Silver. 2002. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26: 311-325. https://doi.org/10.1111/j.1574-6976.2002.tb00617.x
  12. Neyt, C., M. Iriarte, V. H. Thi, and G. R. Cornelis. 1997. Virulence and arsenic resistance in Yersinia. J. Bacteriol. 179: 612-619.
  13. Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol. 7: 207-212. https://doi.org/10.1016/S0966-842X(99)01494-8
  14. Silver, S. and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71: 599-608. https://doi.org/10.1128/AEM.71.2.599-608.2005
  15. Shatwell, K. P., A. Dancis, A. R. Cross, R. D. Klausner, and A. W. Segal. 1996. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J. Biol. Chem. 271: 14240-14244. https://doi.org/10.1074/jbc.271.24.14240
  16. Vorontsov, I. I., G. Minasov, J. S. Brunzelle, L. Shuvalova, O. Kiryukhina, F. R. Collart, and W. F. Anderson. 2007. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 16: 2483-2490. https://doi.org/10.1110/ps.073029607
  17. Vadas, A., H. G. Monbouquette, E. Johnson, and I. Schröder. 1999. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus. J. Biol. Chem. 274: 36715-36721. https://doi.org/10.1074/jbc.274.51.36715
  18. Yang, H. C., J. Cheng, T. M. Finan, B. P. Rosen, and H. Bhattacharjee. 2005. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187: 6991-6997. https://doi.org/10.1128/JB.187.20.6991-6997.2005
  19. Ye, J., H. Yang, B. P. Rosen, and H. Bhattacharjee. 2007. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett. 581: 3996-4000. https://doi.org/10.1016/j.febslet.2007.07.039

피인용 문헌

  1. Purification, crystallization and preliminary X‐ray diffraction analysis of ArsH from Synechocystis sp. strain PCC 6803 vol.70, pp.4, 2011, https://doi.org/10.1107/s2053230x14004865
  2. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/203197
  3. Tetrandrine-Induced Autophagy in MDA-MB-231 Triple-Negative Breast Cancer Cell through the Inhibition of PI3K/AKT/mTOR Signaling vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/7517431
  4. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans vol.35, pp.4, 2011, https://doi.org/10.1007/s11274-019-2632-y
  5. A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.610836
  6. Molecular Mechanisms Underpinning Aggregation in Acidiphilium sp. C61 Isolated from Iron-Rich Pelagic Aggregates vol.8, pp.3, 2020, https://doi.org/10.3390/microorganisms8030314
  7. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic vol.22, pp.6, 2011, https://doi.org/10.1111/1462-2920.14991