Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01020

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans  

Mo, Hongyu (College of Biology, Hunan University)
Chen, Qian (College of Biology, Hunan University)
Du, Juan (College of Biology, Hunan University)
Tang, Lin (College of Biology, Hunan University)
Qin, Fang (College of Biology, Hunan University)
Miao, Bo (Department of Bioengineering, Central South University)
Wu, Xueling (Department of Bioengineering, Central South University)
Zeng, Jia (College of Biology, Hunan University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.5, 2011 , pp. 464-469 More about this Journal
Abstract
The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.
Keywords
Acidithiobacillus ferrooxidans; ArsH; flavoprotein; ferric reductase;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Butcher, B. G. and D. E. Rawlings. 2002. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148: 3983-3992.
2 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
3 Coves, J. and M. Fontecave. 1993. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli. Eur. J. Biochem. 211: 635-641.   DOI   ScienceOn
4 Dancis, A., D. G. Roman, G. J. Anderson, A. G. Hinnebusch, and R. D. Klauser. 1992. Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89: 3869-3873.   DOI   ScienceOn
5 Filisetti, L., J. Valton, M. Fontecave, and V. Niviere. 2005. The flavin reductase ActVB from Streptomyces coelicolor: Characterization of the electron transferase activity of the flavoprotein form. FEBS Lett. 579: 2817-2820.   DOI   ScienceOn
6 Yang, H. C., J. Cheng, T. M. Finan, B. P. Rosen, and H. Bhattacharjee. 2005. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187: 6991-6997.   DOI   ScienceOn
7 Agarwal, R., J. B. Bonanno, S. K. Burley, and S. Swaminathan 2006. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Cryst. D62: 383-391.
8 Butcher, B. G., S. M. Deane, and D. E. Rawlings. 2000. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66: 1826-1833.   DOI   ScienceOn
9 Vorontsov, I. I., G. Minasov, J. S. Brunzelle, L. Shuvalova, O. Kiryukhina, F. R. Collart, and W. F. Anderson. 2007. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 16: 2483-2490.   DOI   ScienceOn
10 Vadas, A., H. G. Monbouquette, E. Johnson, and I. Schröder. 1999. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus. J. Biol. Chem. 274: 36715-36721.   DOI
11 Ye, J., H. Yang, B. P. Rosen, and H. Bhattacharjee. 2007. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett. 581: 3996-4000.   DOI   ScienceOn
12 Mukhopadhyay, R., B. P. Rosen, L. T. Phung, and S. Silver. 2002. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26: 311-325.   DOI   ScienceOn
13 Lopez-Maury, L., F. J. Florencio, and J. C. Reyes. 2003. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185: 5363- 5371.   DOI   ScienceOn
14 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   ScienceOn
15 Liger, D., M. Graille, C. Z. Zhou, N. Leulliot, S. Quevillon- Cheruel, K. Blondeau, J. Janin, and H. van Tilbeurgh. 2004. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J. Biol. Chem. 279: 34890-34897.   DOI
16 Shatwell, K. P., A. Dancis, A. R. Cross, R. D. Klausner, and A. W. Segal. 1996. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J. Biol. Chem. 271: 14240-14244.   DOI
17 Neyt, C., M. Iriarte, V. H. Thi, and G. R. Cornelis. 1997. Virulence and arsenic resistance in Yersinia. J. Bacteriol. 179: 612-619.
18 Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol. 7: 207-212.   DOI   ScienceOn
19 Silver, S. and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71: 599-608.   DOI   ScienceOn