DOI QR코드

DOI QR Code

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation

  • Bankar, Sandip B. (Food Engineering and Technology Department, Institute of Chemical Technology) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology)
  • Received : 2011.03.07
  • Accepted : 2011.03.24
  • Published : 2011.06.28

Abstract

The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.

Keywords

References

  1. Bankar, S. B. and R. S. Singhal. 2010. Optimization of poly-$\varepsilon$- lysine production by Streptomyces noursei NRRL 5126. Bioresour. Technol. 101: 8370-8375. https://doi.org/10.1016/j.biortech.2010.06.004
  2. Bankar, S. B. and R. S. Singhal. 2011. Metabolic precursors enhance the production of poly-$\varepsilon$-lysine by Streptomyces noursei NRRL 5126. Eng. Life Sci. DOI: 10.1002/elsc.201000127.
  3. Bok, S. H. and A. L. Demain. 1977. An improved calorimetric assay for polyols. Anal. Biochem. 81: 18-20. https://doi.org/10.1016/0003-2697(77)90593-0
  4. Calik, P., P. Yilgor, P. Ayhan, and A. Demir. 2004. Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem. Eng. Sci. 59: 5075-5083. https://doi.org/10.1016/j.ces.2004.07.070
  5. Dorresteijn, R. C., C. D. Gooijer, J. Tramper, and E. C. Beuvery. 1994. A simple dynamic method for on-line and off-line determination of $ k_L $a during cultivation of animal cells. Biotechnol. Tech. 8: 675-680.
  6. Felse, P. A. and T. Panda. 2000. Submerged culture production of chitinase by Trichoderma harzianum in stirred-tank bioreactors: The influence of agitator speed. Biochem. Eng. J. 4: 115-120. https://doi.org/10.1016/S1369-703X(99)00039-X
  7. Galaction, A. I., D. Cascaval, C. Onisco, and M. Turnea. 2004. Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeast and fungus broths. Biochem. Eng. J. 20: 85-94. https://doi.org/10.1016/j.bej.2004.02.005
  8. Garcia-Ochoa, F. and E. Gomez. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27: 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006
  9. Garcia-Ochoa, F., V. Santos, J. Casas, and E. Gomez. 2000. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18: 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
  10. Garcia-Ochoaa, F., E. Gomeza, V. E. Santosa, and J. C. Merchukb. 2010. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 49: 289-307. https://doi.org/10.1016/j.bej.2010.01.011
  11. Gomez, E., V. E. Santos, A. Alcon, and F. Garcia-Ochoa. 2006. Oxygen transport rate on Rhodococcus erythropolis cultures: Effect on growth and BDS capability. Chem. Eng. Sci. 61: 4595-4604. https://doi.org/10.1016/j.ces.2006.02.025
  12. Hiraki, J. and E. Suzuki. 1999. Process for producing $\varepsilon$-poly-Llysine with immobilized Streptomyces albulus. US Patent 5900363.
  13. Hiraki, J., T. Ichikawa, S. I. Ninomiya, H. Seki, K. Uohama, H. S. Seki, Kimura, Y. Yanagimoto, and J. W. Barnett. 2003. Use of ADME studies to confirm the safety of $\varepsilon$-polylysine as a preservative in food. Regul. Toxicol. Pharm. 37: 328-340. https://doi.org/10.1016/S0273-2300(03)00029-1
  14. Hirohara, H., M. Takehara, M. Saimura, A. Masayuki, and M. Miyamoto. 2006. Biosynthesis of poly($\varepsilon$-L-lysine)s in two newly isolated strains of Streptomyces sp. Appl. Microbiol. Biotechnol. 73: 321-331. https://doi.org/10.1007/s00253-006-0479-2
  15. Kahar, P., T. Iwata, J. Hiraki, Y. E. Park, and M. Okabe. 2001. Enhancement of $\varepsilon$-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190-194.
  16. Kawase, Y., B. Halard, and M. Moo-Young. 1992. Liquid-phase mass transfer coefficients in bioreactors. Biotechnol. Bioeng. 39: 1133-1140. https://doi.org/10.1002/bit.260391109
  17. Luedeking, R. and E. Piret. 1959. A kinetic study of the lactic acid fermentation. J. Biochem. Microbiol. Technol. Eng. 1: 393-412. https://doi.org/10.1002/jbmte.390010406
  18. Monod, J. 1949. The growth of bacterial cultures. A Review. Microbiology 3: 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
  19. Palomares, L. A. and O. Ramirez. 1996. The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22: 225-237. https://doi.org/10.1007/BF00353943
  20. Pinches, A. and L. Pallent. 1986. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnol. Bioeng. 28: 1484-1496. https://doi.org/10.1002/bit.260281006
  21. Rowe, G. E., A. Margaritis, and N. Wei. 2003. Specific oxygen uptake rate variations during batch fermentation of Bacillus thuringiensis subspecies kurstaki HD-1. Biotechnol. Progr. 19: 1439-1443. https://doi.org/10.1021/bp030018o
  22. Saimura, M., M. Takehara, S. Mizukami, K. Kataoka, and H. Hirohara. 2008. Biosynthesis of nearly monodispersed poly($\varepsilon$-Llysine) in Streptomyces species. Biotechnol. Lett. 30: 377-385. https://doi.org/10.1007/s10529-007-9563-7
  23. Sampaio, F. C., P. Torre, F. L. Passos, P. Perego, F. V. Passos, and A. Converti. 2004. Xylose metabolism in Debaromyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol. Progr. 20: 1641-1650. https://doi.org/10.1021/bp049691j
  24. Shen, W. C., D. Yang, and H. J. Ryser. 1984. Calorimetric determination of microgram quantities of polylysine by trypan blue precipitation. Anal. Biochem. 142: 521-524. https://doi.org/10.1016/0003-2697(84)90500-1
  25. Shih, I. L., M. H. Shen, and Y. T. Van. 2006. Microbial synthesis of poly($\varepsilon$-lysine) and its various applications. Bioresour. Technol. 97: 1148-1159. https://doi.org/10.1016/j.biortech.2004.08.012
  26. Shih, I. L., T. C. Wang, S. Z. Chou, and G. D. Lee. 2010. Sequential production of two biopolymers levan and poly-$\varepsilon$- lysine by microbial fermentation. Bioresour. Technol. 102: 3966- 3969.
  27. Shima, S. and H. Sakai. 1981. Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric. Biol. Chem. 45: 2497-2502. https://doi.org/10.1271/bbb1961.45.2497
  28. Shima, S., H. Matsuoka, T. Iwamoto, and H. Sakai. 1984. Antimicrobial action of $\varepsilon$-poly-L-lysine. J. Antibiot. 37: 1449- 1455. https://doi.org/10.7164/antibiotics.37.1449
  29. Shima, S., S. Oshima, and H. Sakai. 1983. Biosynthesis of $\varepsilon$- poly-L-lysine by washed mycelium of Streptomyces albulus no. 346. Nippon Nogei Kagaku Kaishi 57: 221-226. https://doi.org/10.1271/nogeikagaku1924.57.221
  30. Shuler, M. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 155-184. 2nd Ed. Prentice-Hall of India, New Delhi.
  31. Yoshida, T. and T. Nagasawa. 2003.$\varepsilon$-Poly-L-lysine: Microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 62: 21-26. https://doi.org/10.1007/s00253-003-1312-9
  32. Zhang, Y., X. Feng, H. Xu, Z. Yao, and P. Ouyang. 2010. $\varepsilon$- Poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour. Technol. 101: 5523-5527. https://doi.org/10.1016/j.biortech.2010.02.021
  33. Zou, X., H. Hang, J. Chu, Y. Zhuang, and S. Zhang. 2009. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 $m^3$ scale. Bioresour. Technol. 100: 1406-1412. https://doi.org/10.1016/j.biortech.2008.09.017

Cited by

  1. Enhanced ${\varepsilon}$-Poly-$_L$-lysine Production from Streptomyces ahygroscopicus by a Combination of Cell Immobilization and In Situ Adsorption vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1111.11039
  2. Comparison of Glucose and Glycerol as Carbon Sources for ε-Poly-l-Lysine Production by Streptomyces sp. M-Z18 vol.170, pp.1, 2013, https://doi.org/10.1007/s12010-013-0167-5
  3. Panorama of poly-ε-lysine vol.3, pp.23, 2011, https://doi.org/10.1039/c3ra22596h
  4. Enhancement of ε-poly-l-lysine production coupled with precursor l-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18 vol.36, pp.12, 2013, https://doi.org/10.1007/s00449-013-0958-7
  5. Empirical Predictive Modelling of Poly-${\varepsilon}$-lysine Biosynthesis in Resting Cells of Streptomyces noursei vol.23, pp.1, 2011, https://doi.org/10.1007/s10068-014-0027-2
  6. Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding vol.25, pp.3, 2011, https://doi.org/10.4014/jmb.1405.05069
  7. Recent advances in the biotechnological production of microbial poly(ɛ-l-lysine) and understanding of its biosynthetic mechanism vol.100, pp.15, 2011, https://doi.org/10.1007/s00253-016-7677-3
  8. Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on ε-Poly-l-Lysine Synthesis in Streptomyces albulus NK660 vol.178, pp.7, 2011, https://doi.org/10.1007/s12010-015-1958-7
  9. Biosynthesis, isolation, and structural characterization of ε-poly-L-lysine produced by Streptomyces sp. DES20 vol.6, pp.63, 2011, https://doi.org/10.1039/c6ra10829f
  10. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate vol.44, pp.8, 2011, https://doi.org/10.1007/s10295-017-1953-9
  11. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18 vol.153, pp.None, 2011, https://doi.org/10.1016/j.enzmictec.2021.109907