References
- Ait-Benichou, S., L. B. Jugnia, C. W. Greer, and A. R. Cabral. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
- Albanna, M., M. Warith, and L. Fernandes. 2010. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers. Waste Manag. 30: 219-227. https://doi.org/10.1016/j.wasman.2009.09.038
- Borjesson, S. 2001. Inhibition of methane oxidation by volatile sulfur compounds (CH3SH and CS2) in landfill cover soils. Waste Manag. Res. 19: 314-319. https://doi.org/10.1177/0734242X0101900408
- Bowman, J. P., S. M. Rea, S. A. McCammon, and T. A. McMeekin. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol. 2: 227-237. https://doi.org/10.1046/j.1462-2920.2000.00097.x
- Brosseau, J. and M. Heitz. 1994. Trace gas compound emissions from municipal landfill sanitary sites. Atmos. Environ. 28: 285-293. https://doi.org/10.1016/1352-2310(94)90103-1
- Fitch, M. W., G. E. Speitel, and G. Georgiou. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol. 62: 1124-1128.
- Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188. https://doi.org/10.1111/j.1462-2920.2007.01534.x
- Han, B., T. Su, X. Li, and X. Xing. 2008. Research progresses of methanotrophs and methane monooxygenases. Chin. J. Biotechnol. 24: 1511-1519.
- He, R., A. Ruan, C. Jiang, and D. S. Shen. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199. https://doi.org/10.1016/j.biortech.2007.12.066
- Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208. https://doi.org/10.1111/j.1574-6968.1995.tb07834.x
- Jackel, U., S. Schnell, and R. Conrad. 2004. Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil. Soil Biol. Biochem. 36: 835-840. https://doi.org/10.1016/j.soilbio.2004.01.013
- Juliette, L. Y., M. R. Hyman, and D. J. Arp. 1993. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: Thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 59: 3718-3727.
- Kjeldsen, P. 1996. Landfill gas migration in soil, p. 114. In T. H. Christensen, R. Cossu, and R. Stegmann (eds.). Landfilling of Waste: Biogas. E & FN Spon, London.
- Kumaresan, D., G. C. J. Abell, L. Bodrossy, N. Stralis-Pavese, and J. C. Murrell. 2009. Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors. Environ. Microbiol. Rep. 1: 398-407. https://doi.org/10.1111/j.1758-2229.2009.00059.x
- Lee, E. H., H. Park, and K. S. Cho. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313- 320. https://doi.org/10.1016/j.jhazmat.2010.08.038
- Op den Camp, H. J. M., T. Islam, M. B. Stott, H. R. Harhangi, A. Hynes, S. Schouten, et al. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1: 293-306. https://doi.org/10.1111/j.1758-2229.2009.00022.x
- Saari, A. and P. J. Martikainen. 2003. Dimethyl sulphoxide (DMSO) and dimethyl sulphide (DMS) as inhibitors of methane oxidation in forest soil. Soil Biol. Biochem. 35: 383-389. https://doi.org/10.1016/S0038-0717(02)00288-2
- Scheutz, C., P. Kjeldsen, J. E. Bogner, A. De Visscher, J. Gebert, H. A. Hilger, M. Huber-Humer, and K. Spokas. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
- Scheutz, C., H. Mosbæk, and P. Kjeldsen. 2004. Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual. 33: 61-71. https://doi.org/10.2134/jeq2004.0061
- Smet, E. and H. van Langenhove. 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bioindustry. Biodegradation 9: 273-284. https://doi.org/10.1023/A:1008281609966
- Spokas, K. A. and J. E. Bogner. 2010. Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag. 31: 823-832.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Anaysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Trotsenko, Y. A. and J. C. Murrell. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183- 229.
- Zou, S. C., S. C. Lee, C. Y. Chan, K. F. Ho, X. M. Wang, L. Y. Chan, and Z. X. Zhang. 2003. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. Chemosphere 51: 1015-1022. https://doi.org/10.1016/S0045-6535(03)00004-3
Cited by
- Biodegradation of methane, benzene, and toluene by a consortium MBT14 enriched from a landfill cover soil vol.48, pp.3, 2011, https://doi.org/10.1080/10934529.2013.726812
- Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium vol.48, pp.13, 2013, https://doi.org/10.1080/10934529.2013.815559
- Biodegradation Capacity Utilization as a New Index for Evaluating Biodegradation Rate of Methane vol.23, pp.5, 2011, https://doi.org/10.4014/jmb.1211.11018
- 메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향 vol.41, pp.2, 2011, https://doi.org/10.4014/kjmb.1301.01005
- Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3 vol.36, pp.1, 2014, https://doi.org/10.1007/s10529-013-1339-7
- Density-dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp vol.4, pp.None, 2011, https://doi.org/10.1016/j.btre.2014.09.007
- Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia vol.23, pp.5, 2011, https://doi.org/10.1007/s11356-016-6174-7
- Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2 vol.28, pp.10, 2011, https://doi.org/10.4014/jmb.1804.04015
- 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2011, https://doi.org/10.48022/mbl.2102.02007
- Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability vol.121, pp.17, 2011, https://doi.org/10.1021/acs.chemrev.1c00121
- Biofiltration of methane in presence of ethylbenzene or xylene vol.13, pp.1, 2011, https://doi.org/10.1016/j.apr.2021.101271
- Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil vol.286, pp.p1, 2011, https://doi.org/10.1016/j.chemosphere.2021.131650
- Conversion of biogas from anaerobic digestion to single cell protein and bio-methanol: mechanism, microorganisms and key factors - A review vol.27, pp.4, 2011, https://doi.org/10.4491/eer.2021.109