DOI QR코드

DOI QR Code

Wild Ginseng Attenuates Repeated Morphine-Induced Behavioral Sensitization in Rats

  • Lee, Bom-Bi (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Kwon, Sun-Oh (The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University) ;
  • Yeom, Mi-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Shim, In-Sop (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
  • Received : 2011.03.10
  • Accepted : 2011.04.06
  • Published : 2011.07.28

Abstract

Many studies have suggested that the behavioral and reinforcing effects of morphine are induced by hyperactivation of the mesolimbic dopaminergic system, which results in increases in locomotor activity, c-Fos expression in the nucleus accumbens (NAc), and tyrosine hydroxylase (TH) in the ventral tegmental area (VTA). In order to investigate the effect of wild ginseng (WG) on treating morphine addiction, we examined the behavioral sensitization of locomotor activity and c-Fos and TH expression in the rat brain using immunohistochemistry. Intraperitioneal injection of WG (100 and 200 mg/kg), 30 min before administration of a daily injection of morphine (40 mg/kg, s.c.), significantly inhibited morphine-induced increases in c-Fos expression in NAc and TH expression in VTA as well as in locomotor activity, as compared with Panax ginseng. It was demonstrated that the inhibitory effect of WG on the behavioral sensitization after repeated exposure to morphine was closely associated with the reduction of dopamine biosynthesis and postsynaptic neuronal activity. It suggests that WG extract may be effective for inhibiting the behavioral effects of morphine by possibly modulating the central dopaminergic system and that WG might be a useful resource to develop an agent for preventing and treating morphine addiction.

Keywords

References

  1. Alper, R. H., K. T. Demarest, and K. E. Moore. 1980. Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems. J. Neural. Transm. 48: 157-165. https://doi.org/10.1007/BF01243500
  2. Cadoni, C. and G. D. Chiara. 1999. Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate-putamen in rats sensitized to morphine. Neuroscience 90: 447-455. https://doi.org/10.1016/S0306-4522(98)00466-7
  3. Curran, E. J., H. Akil, and S. J. Watson. 1996. Psychomotor stimulant and opiate-induced Fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals. Neurochem. Res. 21: 1425-1435. https://doi.org/10.1007/BF02532384
  4. Devine, D. P. and R. A. Wise. 1994. Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J. Neurosci. 14: 1978-1984. https://doi.org/10.1523/JNEUROSCI.14-04-01978.1994
  5. Everitt, B. J., A. Dickinson, and T. W. Robbins. 2001. The neuropsychological basis of addictive behavior. Brain Res. Rev. 36: 129-138. https://doi.org/10.1016/S0165-0173(01)00088-1
  6. Frankel, P. S., R. E. Harlan, and M. M. Garcia. 1999. Chronic administration of morphine alters immediate-early gene expression in the forebrain of post-dependent rats. Brain Res. 835: 204-212. https://doi.org/10.1016/S0006-8993(99)01579-6
  7. Guo, M., J. H. Wang, J. Y. Yang, D. Zhu, N. J. Xu, G. Pei, C. F. Wu, and X. Li. 2004. Roles of ginsenosides on morphineinduced hyperactivity and rewarding effects in mice. Planta Med. 70: 688-690. https://doi.org/10.1055/s-2004-827197
  8. Johnson, P. I. and T. C. Napier. 2000. Ventral pallidal injections of a mu antagonist block the development of behavioral sensitization to systemic morphine. Synapse 38: 61-70. https://doi.org/10.1002/1098-2396(200010)38:1<61::AID-SYN7>3.0.CO;2-6
  9. Kim, H. S., C. G. Jang, W. K. Park, K. W. Oh, H. M. Rheu, D. H. Cho, and S. Oh. 1996. Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. 27: 199-204. https://doi.org/10.1016/0306-3623(95)02023-3
  10. Kim, H. S., J. G. Kang, Y. H. Seong, K. Y. Nam, and K. W. Oh. 1995. Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav. 50: 23-27. https://doi.org/10.1016/0091-3057(94)00224-7
  11. Kim, H. S. and K. S. Kim. 1999. Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav. Brain Res. 103: 55-61. https://doi.org/10.1016/S0166-4328(99)00030-3
  12. Kim, H. C., E. J. Shin, C. G. Jang, M. K. Lee, J. S. Eun, J. T. Hong, and K. W. Oh. 2005. Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. Res. 28: 995-1001. https://doi.org/10.1007/BF02977391
  13. Kim, S. E., I. Shim, J. K. Chung, and M. C. Lee. 2006. Effect of ginseng saponins on enhanced dopaminergic transmission and locomotor hyperactivity induced by nicotine. Neuropsychopharmacology 31: 1714-1721. https://doi.org/10.1038/sj.npp.1300945
  14. Kuribara, H. 1995. Modification of morphine sensitization by opioid and dopamine receptor antagonists: Evaluation by studying ambulation in mice. Eur. J. Pharmacol. 275: 251-258. https://doi.org/10.1016/0014-2999(94)00787-8
  15. Lee, B., S. M. Han, and I. Shim. 2009. Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: Possible involvement of the dopaminergic system in the ventral tegmental area. Neurosci. Lett. 449: 128-132. https://doi.org/10.1016/j.neulet.2008.10.089
  16. Lee, B., J. Park, S. Kwon, M. W. Park, S. M. Oh, M. J. Yeom, I. Shim, H. J. Lee, and D. H. Hahm. 2010. Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62: 263-271. https://doi.org/10.1211/jpp.62.02.0015
  17. Lee, B., C. H. Yang, D. H. Hahm, H. J. Lee, S. M. Han, K. S. Kim, and I. Shim. 2008. Inhibitory effects of ginseng total saponins on behavioral sensitization and dopamine release induced by cocaine. Biol. Pharm. Bull. 31: 436-441. https://doi.org/10.1248/bpb.31.436
  18. Martin, T. J., M. Miller Jr., S. I. Dworkin, J. E. Smith, and L. J. Porrino. 1997. Alteration of local cerebral glucose utilization following intravenous administration of heroin in Fisher 344 rats. Brain Res. 755: 313-318. https://doi.org/10.1016/S0006-8993(97)00114-5
  19. Nabata, H., H. Saito, and K. Takagi. 1973. Pharmacological studies of neutral saponins (GNS) of Panax ginseng root. Jpn. J. Pharmacol. 23: 29-41. https://doi.org/10.1254/jjp.23.29
  20. Orzi, F., F. Passarelli, M. L. Riccia, R. D. Grezia, and F. E. Pontieri. 1996. Intravenous morphine increases glucose utilization in the shell of the rat nucleus accumbens. Eur. J. Pharmacol. 302: 49-51. https://doi.org/10.1016/0014-2999(96)00128-8
  21. Paxinos, G. and C. Watson. 1986. The Rat Brain in Stereotaxic Coordinates. New York, Academic Press.
  22. Pecins-Thompson, M. and J. Peris. 1993. Behavioral and neurochemical changes caused by repeated ethanol and cocaine administration. Psychopharmacology (Berl.) 110: 443-450. https://doi.org/10.1007/BF02244651
  23. Phillips, T. J., A. J. Roberts, and C. N. Lessov. 1997. Behavioral sensitization to ethanol: Genetics and the effects of stress. Pharmacol. Biochem. Behav. 57: 487-493. https://doi.org/10.1016/S0091-3057(96)00448-0
  24. Pontieri, F. E., G. Tanda, and G. D. Chiara. 1995. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the 'shell' as compared to the 'core' of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92: 12304-12308. https://doi.org/10.1073/pnas.92.26.12304
  25. Serrano, A., M. A. Aguilar, C. Manzanedo, M. Rodriguez- Arias, and J. Minarro. 2002. Effects of DA D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 26: 263-271.
  26. Shim, I., J. I. Javaid, D. Wirtshafter, S. Y. Jang, K. H. Shin, H. J. Lee, Y. C. Chung, and B. G. Chun. 2001. Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behav. Brain Res. 121: 137-147. https://doi.org/10.1016/S0166-4328(01)00161-9
  27. Stewart, J. 1983. Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-administration. Prog. Neuropsychopharmacol. Biol. Psychiatry 7: 591-597. https://doi.org/10.1016/0278-5846(83)90030-1
  28. Stewart, J. 1983. Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-administration. Prog. Neuropsychopharmacol. Biol. Psychiatry 7: 591-597. https://doi.org/10.1016/0278-5846(83)90030-1
  29. Tachikawa, E., K. Kudo, M. Nunokawa, T. Kashimoto, E. Takahashi, and S. Kitagawa. 2001. Characterization of ginseng saponin ginsenoside-Rg(3) inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Biochem. Pharmacol. 62: 943-951. https://doi.org/10.1016/S0006-2952(01)00743-2
  30. Takahashi, E., K. Kudo, K. Harada, T. Kashimoto, Y. Miyate, A. Kakizahi, and E. Takahashi. 1999. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. Pharmacol. 369: 23-32. https://doi.org/10.1016/S0014-2999(99)00043-6
  31. Tanda, G., F. E. Pontieri, and G. D. Chiara. 1997. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276: 2048-2050. https://doi.org/10.1126/science.276.5321.2048
  32. Taracha, E., S. J. Chrapusta, M. Lehner, A. Skorzewska, P. Maciejak, J. Szyndler, and A. Plaznik. 2008. Morphine and methadone pre-exposures differently modify brain regional Fos protein expression and locomotor activity responses to morphine challenge in the rat. Drug Alcohol Depend. 97: 21-32. https://doi.org/10.1016/j.drugalcdep.2008.03.013
  33. Tokuyama, S., K. W. Oh, H. S. Kim, M. Takahashi, and H. Kaneto. 1992. Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effect of methamphetamine in mice. Japan J. Pharmacol. 59: 423-425. https://doi.org/10.1254/jjp.59.423
  34. Uslaner, J., A. Badiani, C. S. Norton, H. E. Day, S. J. Watson, H. Akil, and T. E. Robinson. 2001. Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. 13: 1977-1983. https://doi.org/10.1046/j.0953-816x.2001.01574.x
  35. van Ree, J. M., M. A. Gerrits, and L. J. Vanderschuren. 1999. Opioids, reward and addiction: An encounter of biology, psychology and medicine. Pharmacol. Rev. 51: 341-396.
  36. Vanderschuren, L. J. and P. W. Kalivas. 2000. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology (Berl.) 151: 99-120. https://doi.org/10.1007/s002130000493
  37. Vezina, P., P. W. Kalivas, and J. Stewart. 1987. Sensitization occurs to the locomotor effects of morphine and the specific mu-opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens. Brain Res. 4: 51-58.
  38. Vries, D. T. J., A. N. Schoffelmeer, R. Binnekade, A. H. Mulder, and L. J. Vanderschuren. 1998. Drug-induced reinstatement of heroin- and cocaine-seeking behavior following long-term extinction is associated with expression of behavioral sensitization. Eur. J. Neurosci. 10: 3565-3571. https://doi.org/10.1046/j.1460-9568.1998.00368.x
  39. Weissenborn, R., V. Deroche, G. F. Koob, and F. Weiss. 1966. Effects of dopamine agonists and antagonists on cocaineinduced operant responding for a cocaine-associated stimulus. Psychopharmacology (Berl.) 126: 311-322.
  40. Yoon, S. S., B. H. Lee, H. S. Kim, K. H. Choi, J. Yun, E. Y. Jang, et al. 2007. Potential roles of GABA receptors in morphine self-administration in rats. Neurosci. Lett. 428: 33-37. https://doi.org/10.1016/j.neulet.2007.09.034
  41. Young, S. T., L. J. Porrino, and M. J. Iadarola. 1991. Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88: 1291-1295. https://doi.org/10.1073/pnas.88.4.1291
  42. Zernig, G., I. A. O'Laughlin, and H. C Fibiger. 1997. Nicotine and heroin augment cocaine-induced dopamine overflow in nucleus accumbens. Eur. J. Pharmacol. 337: 1-10. https://doi.org/10.1016/S0014-2999(97)01184-9

Cited by

  1. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system vol.37, pp.1, 2011, https://doi.org/10.5142/jgr.2013.37.8
  2. Acupuncture Stimulation Attenuates Impaired Emotional-Like Behaviors and Activation of the Noradrenergic System during Protracted Abstinence following Chronic Morphine Exposure in Rats vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/216503
  3. Phytotherapy of Opioid Dependence and Withdrawal Syndrome: A Review vol.28, pp.6, 2011, https://doi.org/10.1002/ptr.5073
  4. Korean Red Ginseng attenuates anxiety-like behavior during ethanol withdrawal in rats vol.38, pp.4, 2011, https://doi.org/10.1016/j.jgr.2014.05.010