참고문헌
- Aarnikunnas J., K. Ronnholm, and A. Palva. 2002. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl. Microbiol. Biotechnol. 59: 665-667. https://doi.org/10.1007/s00253-002-1070-0
- Carvalheiro, F., P. Moniz, L. C. Duarte, M. P. Esteves, and F. M. Grio. 2011. Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38: 221-227. https://doi.org/10.1007/s10295-010-0823-5
- Choi, I. K., S. H. Jung, B. J. Kim, S. Y. Park, J. Kim, and H. U. Han. 2006. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253.
- Chung, C. H. and D. F. Day. 2002. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196-199. https://doi.org/10.1038/sj.jim.7000269
- Ghoreishi, S. M. and Gholami Shahrestani. 2009. Review on engineering mannitol production. Trends Food Sci. Tech. 20: 263-270. https://doi.org/10.1016/j.tifs.2009.03.006
- Helanto, M., J. Aarnikunnas, N. von Weymarn, U. Airaksinen, A. Palva, and M. Leisola. 2005. Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J. Biotechnol. 116: 282-294.
- Hemme, D. and C. Foucaud-Scheunemann. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
- Itoh, Y., A. Tanakara, H. Araya, K. Ogasawara, H. Inabi, Y. Sakamoto, and J. Koga. 1992. Lactobacillus B001 for the manufacture of mannitol, acetic acid, lactic acid. European patent EP 486024.
- Kim., Y. S., Y. S. Kim, S. Y. Kim, J. H. Whang, and H. J. Suh. 2008. Application of omija (Schiandra chinensis) and plum (Prunus mume) extracts for the improvement of kimchi quality. Food Control 19: 662-669. https://doi.org/10.1016/j.foodcont.2007.07.006
- Monchois, V., M. Remaud-Simeon, R. R. B. Russell, P. Monsan, and R. M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino acid residues playing a key role in enzyme activity. Appl. Microbiol. Biotechnol. 48: 465-472. https://doi.org/10.1007/s002530051081
- Olvera, C., S. Centano-Leija, and A. Lopez-Munguia. 2006. Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC8293. Antonie Van Leeuwenhoek 92: 11-20.
- Patra, F., S. K. Tomar, Y. S. Rajput, and R. Singh. 2011. Characterization of mannitol producing strains species. World J. Microbiol. Biotechnol. 27: 933-939. https://doi.org/10.1007/s11274-010-0536-y
- Saha, B. C and F. M. Racine. 2010. Biotechnological production of mannitol and its application. Appl. Microbiol. Biotechnol. 86: 1003-1015. https://doi.org/10.1007/s00253-010-2494-6
- Soetaert, W. 1990. Production of mannitol with Leuconostoc mesenteroides. Med. Fac. Landbouwwet Rijksuniv. Gent. 55: 1549-1552.
-
Soetaert, W., K. Buchholz, and E. J. Vandamme. 1995. Production of
$_D-mannitol$ and$_D-lactic$ acid by fermentation with Leuconostoc mesenteroides. Agro. Food Ind. HiTech. 6: 41-44. - von Weymarn, N., J. Kristiina, K. J. Kiviharju, S. T. Jaaskelainen, and M. S. Leisola. 2003. Scale-up of a new bacterial mannitol production process. Biotechnol. Prog. 19: 815-821. https://doi.org/10.1021/bp025718s
-
von Weymarn, N., K. Kiviharju, and M. Leisola. 2002. High-level production of
$_D-mannitol$ with membrane cell-recycle bioreactor. J. Ind. Microbiol. Biotechnol. 29: 44-49. https://doi.org/10.1038/sj.jim.7000262 - von Weymarn, N. 2002. Process development for mannitol production by lactic acid bacteria. PhD Thesis. Helsinki University of Technology, Finland.
-
von Weymarn, N., M. Hujanen, and M. Leisola. 2002. Production of
$_D-mannitol$ by heterofermentative lactic acid bacteria. Proc. Biochem. 37: 1207-1213. https://doi.org/10.1016/S0032-9592(01)00339-9 - Wisselink, H. W., R. A. Weusthuisa, G. Egginka, J. Hugenholtza, and G. J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. Int. Dairy J. 12: 151-161. https://doi.org/10.1016/S0958-6946(01)00153-4
- Yun, J. W and D. H. Kim. 1998. A comparative study of mannitol production by two lactic acid bacteria. J. Ferment. Bioeng. 85: 203-208. https://doi.org/10.1016/S0922-338X(97)86768-2
피인용 문헌
- Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum vol.35, pp.5, 2012, https://doi.org/10.1007/s00449-011-0651-7
- 식물성 배지에서 Lactobacillus plantarum의 배양을 위한 배지 최적화 vol.27, pp.6, 2011, https://doi.org/10.7841/ksbbj.2012.27.6.347
- 폐배추 추출물을 이용한 Leuconostoc citreum GR1 종균 배양용 최적 배지 및 배양 조건 개발 vol.42, pp.7, 2011, https://doi.org/10.3746/jkfn.2013.42.7.1125
- 유산균의 산업적 배양을 위한 미역의 유용성 평가 vol.22, pp.2, 2011, https://doi.org/10.11002/kjfp.2015.22.2.251
- Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes vol.10, pp.8, 2011, https://doi.org/10.1371/journal.pone.0133990
- Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles vol.46, pp.4, 2011, https://doi.org/10.1080/10826068.2015.1045615
- Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives vol.21, pp.8, 2011, https://doi.org/10.3390/molecules21081074
- Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum vol.15, pp.None, 2016, https://doi.org/10.1186/s12934-015-0400-8
- Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-12016-z
- Complete genome sequence of Leuconostoc suionicum DSM 20241 T provides insights into its functional and metabolic features vol.12, pp.None, 2017, https://doi.org/10.1186/s40793-017-0256-0
- Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter vol.27, pp.12, 2011, https://doi.org/10.4014/jmb.1708.08050
- Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700 vol.68, pp.5, 2019, https://doi.org/10.1111/lam.13118
- Use of sourdough fermentation to reducing FODMAPs in breads vol.245, pp.6, 2011, https://doi.org/10.1007/s00217-019-03239-7
- Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life vol.57, pp.6, 2011, https://doi.org/10.1007/s12275-019-9048-0
- Isolation and Characterization of Kimchi Starters Leuconostoc mesenteroides PBio03 and Leuconostoc mesenteroides PBio104 for Manufacture of Commercial Kimchi vol.30, pp.7, 2011, https://doi.org/10.4014/jmb.2001.01011
- Development of CRISPR Interference (CRISPRi) Platform for Metabolic Engineering of Leuconostoc citreum and Its Application for Engineering Riboflavin Biosynthesis vol.21, pp.16, 2020, https://doi.org/10.3390/ijms21165614
- Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts vol.90, pp.None, 2020, https://doi.org/10.1016/j.fm.2020.103464
- Sichuan paocai fermented by mixed‐starter culture of lactic acid bacteria vol.8, pp.10, 2020, https://doi.org/10.1002/fsn3.1833
- Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi vol.10, pp.9, 2011, https://doi.org/10.3390/foods10092148
- Levan from Leuconostoc citreum BD1707: production optimization and changes in molecular weight distribution during cultivation vol.21, pp.1, 2011, https://doi.org/10.1186/s12896-021-00673-y