소수성 다공성 평막의 표면 친수화를 통한 막성능 향상

Enhancement of Membrane Performance through Surface Hydrophilization of Hydrophobic Porous Flat-sheet Membranes

  • 김백암 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과) ;
  • 이학민 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과) ;
  • 이보성 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과) ;
  • 김성표 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 나노생명화학공학과)
  • Kim, Baek-Ahm (Department of Chemical Engineering, Hannam University) ;
  • Lee, Hak-Min (Department of Chemical Engineering, Hannam University) ;
  • Lee, Bo-Seong (Department of Chemical Engineering, Hannam University) ;
  • Kim, Sung-Pyo (Department of Chemical Engineering, Hannam University) ;
  • Cheong, Seong-Ihl (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji-Won (Department of Chemical Engineering, Hannam University)
  • 투고 : 2011.03.02
  • 심사 : 2011.04.22
  • 발행 : 2011.09.25

초록

소수성 막의 파울링 현상 개선, 젖음성 향상을 통한 투과도 증가 등을 위하여 poly(vinyl amine), poly(styrene sulfonic acid), poly(vinyl sulfonic acid), 그리고 poly(acrylamide-co-acrylic acid) 등의 다양한 흡착소재를 polyethylene(PE) 다공성막 표면에 흡착용액 농도, 흡착시간, 염의 종류, 이온세기 등을 변화시키면서 순수 투과도를 측정하였다. 일반적으로 흡착용액의 농도, 흡착시간, 그리고 이온세기가 증가하면 투과도는 초기에 증가하다가 감소하는 경향을 보였다. Poly(vinyl sulfonic acid) 1000 ppm, $Mg(NO_3)_2$의 이온세기 0.1, 그리고 흡착시간 150초 조건에서 순수투과도가 35% 향상된 375 $L/m^2h$(LMH)를 얻었으며, poly(styrene sulfonic acid) 1000 ppm, NaCl의 이온세기 0.1과 0.2, 그리고 흡착시간 60초에서 각각 50%(411 LMH), 35%(374 LMH)의 순수 투과도 증가율을 보였다.

In order to enhance water permeability through the improvement of fouling phenomena and wettability of hydrophobic porous membranes, various adsorption materials, i.e., poly(vinyl amine), poly (styrene sulfonic acid), poly(vinyl sulfonic acid), and poly(acrylamide-co-acrylic acid) were adsorbed onto the surface of polyethylene (PE) porous membrane. The concentration of adsorption solutions, adsorption time, the sort of salts and their ionic strength were varied, and the pure water permeability of their resulting adsorbed membranes was measured. In general, water permeability increased with an initial increase in the concentration of adsorption solution, adsorption time, and ionic strength and then decreased with a further increase. The pure water permeability of 375 $L/m^2h$(LMH), 35% enhancement, was obtained at a condition of poly(vinyl sulfonic acid) 1000 ppm, $Mg(NO_3)_2$ ionic strength(IS) 0.1, and adsorption time 150 sec, while the 50% (411 LMH) and 35% (374 LMH) enhancements were obtained at conditions of poly(styrene sulfonic acid) 1000 ppm, adsorption time 60 sec, and NaCl IS 0.1 and 0.2, respectively.

키워드

참고문헌

  1. A. Nabe, E. Staude, and G. Belfort, J. Membrane Sci., 133, 57 (1997). https://doi.org/10.1016/S0376-7388(97)00073-2
  2. S. Belfer, J. Gilron, Y. Purinson, R. Fainshtain, N. Daltrophe, M. Priel, B. Tenzer, and A. Toma, Desalination, 139, 169 (2001). https://doi.org/10.1016/S0011-9164(01)00307-1
  3. I. Gancarz, G. Pozniak, and M. Bryjak, Eur. Polym. J., 36, 1563 (2000). https://doi.org/10.1016/S0014-3057(99)00240-2
  4. K. S. Kim, K. H. Lee, K. Cho, and C. E. Park, J. Membrane Sci., 199, 135 (2002). https://doi.org/10.1016/S0376-7388(01)00686-X
  5. D. S. Wavhal and E. R. Fisher, Langmuir, 19, 79 (2003). https://doi.org/10.1021/la020653o
  6. P. Wang, K. L. Tan, E. T. Kang, and K. G. Neoh, J. Membrane Sci., 195, 103 (2002). https://doi.org/10.1016/S0376-7388(01)00548-8
  7. M. Ulbricht and G. Belfort, J. Membrane Sci., 111, 193 (1996). https://doi.org/10.1016/0376-7388(95)00207-3
  8. S. Akhtar, C. Hawes, L. Dudley, I. Reed, and P. Stratford, J. Membrane Sci., 107, 209 (1995). https://doi.org/10.1016/0376-7388(95)00118-9
  9. F. F. Stengaard, Desalination, 70, 207 (1988).
  10. K. B. Hvid, P. S. Neilsen, and F. F. Stengaard, J. Membrane Sci., 53, 189 (1990). https://doi.org/10.1016/0376-7388(90)80014-D
  11. L. Na, L. Zhongzhou, and X. Shuguang, J. Membrane Sci., 169, 17 (2000). https://doi.org/10.1016/S0376-7388(99)00327-0
  12. G. Kang, M. Liu, B. Lin, Y. Cao, and Q. Yuan, Polymer, 48, 1165 (2007). https://doi.org/10.1016/j.polymer.2006.12.046
  13. W. J. Ward and T. J. McCarthy, in Encyclopedia of Polymer Science and Engineering, 2nd ed., H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Editors, John Wiley and Sons, New York, Suppl. Vol., p 674 (1989).
  14. M. Kozlov, M. Quarmyne, W. Chen, and T. J. McCarthy, Macromolecules, 36, 6054 (2003). https://doi.org/10.1021/ma021681g
  15. T. Serizawa, S. Kamimura, N. Kawanishi, and M. Akashi, Langmuir, 18, 8381 (2002). https://doi.org/10.1021/la0204491
  16. T. Serizawa, S. Hashiguchi, and M. Akashi, Langmuir, 15, 5363 (1999) https://doi.org/10.1021/la9816050
  17. S. G. Gholap, C. S. Gopinath, and M. V. Badiger, J. Phys. Chem. B, 19, 13942 (2005).
  18. C. Zhang, F. Yang, W. Wang, and B. Chen, Sep. Purif. Tech., 61, 276 (2008). https://doi.org/10.1016/j.seppur.2007.10.019
  19. Y. Yang, L. Wan, and Z. Xu, J. Membrane Sci., 337, 70 (2009). https://doi.org/10.1016/j.memsci.2009.03.023
  20. B. A. Kim, H. M. Lee, B. S. Lee, S. P. Kim, and J. W. Rhim, Desalination, submitted.