과산화수소/초음파를 이용한 알지네이트의 저분자화

Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation

  • 최수경 (조선대학교 공과대학 생명화학공학과) ;
  • 최유성 (조선이공대학 생명환경화공과)
  • Choi, Su-Kyoung (Department of Chemical Engineering, Chosun University) ;
  • Choi, Yoo-Sung (Department of Bioenvironmental & Chemical Engineering, Chosun College University of Science & Technology)
  • 투고 : 2011.03.07
  • 심사 : 2011.05.04
  • 발행 : 2011.09.25

초록

천연 알지네이트를 저분자화시키기 위해 과산화수소/초음파를 사용하였다. 이때 반응 온도 시간, 과산화수소 농도 그리고 초음파 조사 조건 등이 저분자화 생성물에 미치는 영향을 검토하였다. 생성된 저분자 알지네이트의 화학적 구조를 규명한 결과 주로 1,4-glycosidic bond가 끓어져서 저분자화가 진행되고 특정조건에서 생성물에 formate 그룹이 형성됨을 확인할 수 있었다. 생성물의 분자량은 MALS가 부착된 GPC를 사용하여 측정하였다. 2 wt%의 고분자 알지네이트 용액을 50 $^{\circ}C$의 초음파 분위기에서 0.5시간 동안 반응시켰을 때 분자량이 450 kDa에서 15.9 kDa로 저하되었다. 또한 분자량분포도는 상당히 좁고 반응 조건에 따라 큰 변화 없이 일정함(~2)을 확인할 수 있었다.

A high molecular weight natural sodium alginate (HMWSAs) was depolymerized by hydrogen peroxide ($H_2O_2$) with ultrasonic irradiation. The effects of the reaction conditions such as reaction temperature, reaction time, hydrogen peroxide concentration and ultrasonic irradiation time on the molecular weights and the end groups of the depolymerized alginates were investigated. It was revealed that depolymerization occurred through the breakage of 1,4-glycosidic bonds of sodium alginate and the formation of formate groups on the main chain under certain conditions. The changes in molecular weight were monitored by GPC-MALS. The molecular weight of 2 wt% alginate solution decreased from 450 to 15.9 kDa for 0.5 hrs at 50 $^{\circ}C$ under an appropriate ultrasonic irradiation. The PDI(polydispersity index)s of the alginate depolymerized in this study were considerably narrow in comparison with those obtained from the other chemical degradation method. The PDIs were in the range of 1.5~2.5 in any reaction conditions employed in this study.

키워드

참고문헌

  1. H. Grasdalen, B. Larsen, and O. Smidsrod, Carbohydr. Res., 89, 179 (1981). https://doi.org/10.1016/S0008-6215(00)85243-X
  2. E. Nishide, H. Anzai, and N. Uchida, Nippon Suisan Gakkaishi, 53, 1215 (1987). https://doi.org/10.2331/suisan.53.1215
  3. E. Nishide, Y. Kinoshita, H. Anzai, and N. Uchida, Nippon Suisan Gakkaishi, 54, 1619 (1988). https://doi.org/10.2331/suisan.54.1619
  4. E. Nishide, A. Hiroshi, and U. Naoyuki, Nippon Suisan Gakkaishi, 53, 1215 (1987). https://doi.org/10.2331/suisan.53.1215
  5. M. Fujihara and T. Nagumo, J. Chromatogr., 465, 386 (1989). https://doi.org/10.1016/S0021-9673(01)92676-7
  6. K. Noda and K. Takada, Bull. J. Soc. Sci. Fish, 49, 1591 (1983). https://doi.org/10.2331/suisan.49.1591
  7. S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Biochem. Pharmacol., 65, 173 (2003). https://doi.org/10.1016/S0006-2952(02)01478-8
  8. T. Nishino, H. Kiyohara, H. Yamada, and H. Nagumo, Phytochem., 30, 535 (1991). https://doi.org/10.1016/0031-9422(91)83722-W
  9. D. J. Schaeffer and V. S. Krylov, Environ. Safety, 45, 208 (2000). https://doi.org/10.1006/eesa.1999.1862
  10. J. D. Floros and H. Liang, Food Technology, 79, 84 (1994).
  11. D. B. Choi, B. Y. Ryu, Y. L. Piao, S. K. Choi, B. W. Jo, W. S. Shin, and H. Cho, J. Ind. Eng. Chem., 2, 182 (2008).
  12. S. Aiba, Carbohydr. Res., 265, 323(1994). https://doi.org/10.1016/0008-6215(94)00243-6
  13. W. S. Choi, K. J. Ahn, D. W. Lee, M. W. Byun, and H. J. Park, Polym. Degrad. Stab., 3, 533 (2002).
  14. L. B. Lu, P. Zhang, Y. Cao, Q. Lin, S. J. Pang, and H. Wang, J. Appl. Polym. Sci., 113, 3585 (2009). https://doi.org/10.1002/app.30328
  15. A. Haug, B. Larsen, and O. Smidsrod, Acta Chemica Scandinavica, 21, 691 (1967). https://doi.org/10.3891/acta.chem.scand.21-0691
  16. S. Y. Ahn, Ph.D. Thesis, Ehwa Woman University (2002).
  17. R. J. Nordtveit, K. M. Varum, and O. Smidsrod, Carbohydr. Polym., 4, 253 (1994).
  18. Z. Yang, J. P. Li, and H. S. Guan, Carbohydr. Polym., 58, 115 (2004). https://doi.org/10.1016/j.carbpol.2004.04.022
  19. L. B. Chang, M. C. Tai, and F. Cheng, J. Agric. Food Chem., 49, 4845(2001). https://doi.org/10.1021/jf001469g
  20. S. Tanioka, Y. Matsul, I. Icie, T. Tanigawa, Y. Tanaka, H. Shibata, Y. Sawa, and Y. Kono, Biosci. Biotechnol. Biochem., 60, 20014(1996).
  21. F. Tian, Y. Liu, K. Hu, and B. Zhao, Carbohydr. Polym., 57, 31(2004). https://doi.org/10.1016/j.carbpol.2004.03.016
  22. A. J. Aliste, F. F. Vieira, and N. L. Del-Masto, Radiat. Phys. Chem., 57, 305, (2000). https://doi.org/10.1016/S0969-806X(99)00471-5
  23. Z. H. Qun, M. W. Shi, F. H. Jin, H. Z. Li, and C. G. Ying, Carbohydr. Polym., 68, 761 (2007). https://doi.org/10.1016/j.carbpol.2006.08.015
  24. S. M. Kim and Zayas, J. Food Sci., 56, 926 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb14607.x
  25. Y. Y. Kim and Y. J. Cho, J. Korea Fish. Soc., 4, 325 (2010).
  26. K. Sakugawa, A. Ikeda, A. Takemura, and H. Ono, J. Appl. Polym. Sci., 93, 1372 (2004). https://doi.org/10.1002/app.20589
  27. G. G. Allan and M. Peyron, Carbohydr. Res., 277, 257 (1995). https://doi.org/10.1016/0008-6215(95)00207-A
  28. D. W. Lee, W. S. Choi, M. W. Byun, H. J. Park, Y. M. Yu, and C. M. Lee, J. Agric. Food Chem., 16, 4819 (2003).
  29. J. M. Wasikiewicz, F. Yoshii, N. Nagasawa, R. A. Wach, and H. Mitom, Radiat. Phys. Chem., 73, 287 (2005). https://doi.org/10.1016/j.radphyschem.2004.09.021
  30. C. G. Gomez, M. Rinaudo, and M. A. Villar, Carbohydr. Polym., 67, 296 (2007) https://doi.org/10.1016/j.carbpol.2006.05.025
  31. N. Nagasawa, H. Mitomo, F. Yoshii, and T. Kume, Polym. Degrad. Stab., 69, 279(2000). https://doi.org/10.1016/S0141-3910(00)00070-7
  32. C. Q. Qin, Y. M. Du, and L. Xiao, Polym. Degrad. Stab., 76, 211 (2002). https://doi.org/10.1016/S0141-3910(02)00016-2
  33. S. Nakagawa and H. Okuda, Nippon Shokuhin Kagaku Kogaku Kaishi, 43, 917 (1996). https://doi.org/10.3136/nskkk.43.917
  34. M. J. Kim, Ph.D. Thesis, Ewha Woman University (2001).
  35. H. J. Kim, Master Thesis, Ewha Woman University (2002).