Characterization of Acrylic Polymer-Grafted MWNTs Prepared by Atom Transfer Radical Polymerization

원자이동 라디칼중합 반응에 의하여 제조된 아크릴계 고분자가 그래프트된 MWNT의 특성평가

  • Joo, Young-Tae (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Jung, Kwang-Ho (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Yang-Soo (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 주영태 (인제대학교 나노시스템공학과, 나노매뉴팩쳐링연구소) ;
  • 정광호 (인제대학교 나노시스템공학과, 나노매뉴팩쳐링연구소) ;
  • 김양수 (인제대학교 나노시스템공학과, 나노매뉴팩쳐링연구소)
  • Received : 2011.01.19
  • Accepted : 2011.04.22
  • Published : 2011.09.25

Abstract

MWNT/PMMA and MWNT/PDMAEMA nanocomposites were prepared using an atom transfer radical polymerization (ATRP). The FTIR and XRD analysis results showed that the nanocomposites were composed of MWNTs grafted by either PMMA(PMMA-g-MWNTs) or PDMAEMA(PDMAEMA-g-MWNTs). A controlled living radical polymerization of ATRP was characterized by the thermogram analysis for the nanocomposites. The morphologies of prepared nanocomposites were analyzed by transmission electron microscopy. Raman analysis results for the nanocomposites showed that there occurred covalent bonding between acrylic polymers and MWNTs.

원자이동 라디칼중합(atom transfer radical polymerization: ATRP) 반응을 이용하여 poly(methyl methacrylate)(PMMA)와 poly((2-dimethyl amino)ethyl methacrylate)(PDMAEMA) 등의 아크릴계 고분자가 각각 multi-walled carbon nanotube(MWNT) 표면에 그래프팅된 MWNT/PMMA 및 MWNT/PDMAEMA 나노복합체를 제조하였다. FTIR과 XRD 분석을 통하여 나노복합체에 존재하는 아크릴계 고분자의 특성피크를 확인하였으며 열중량분석법(TGA) 가열감량 곡선 분석을 통하여 ATRP 반응의 라디칼 리빙성이 유지됨을 확인하였다. 투과전자현미경(TEM)분석을 통하여 아크릴계 고분자가 MWNT에 그래프팅된 나노복합체의 형태(morphology)를 확인하였으며 Raman 분광분석을 수행함으로써 MWNT/PMMA 및 MWNT/PDMAEMA 나노복합체에서 고분자와 MWNT 사이에 공유결합이 형성되어 나타나는 스펙트럼 상의 D 밴드 및 G 밴드의 위치 및 세기 변화를 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. P. J. F. Harris, Int. Mater. Rev., 49, 31 (2004). https://doi.org/10.1179/095066004225010505
  2. M. T. Byrne and Y. K. Gun'ko, Adv. Mater., 22, 1672 (2010). https://doi.org/10.1002/adma.200901545
  3. W. A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007). https://doi.org/10.1016/j.progpolymsci.2006.11.002
  4. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001). https://doi.org/10.1021/cr940534g
  5. V. Coessens, T. Pintauer, and K. Matyjaszewski, Prog. Polym. Sci., 26, 337 (2001). https://doi.org/10.1016/S0079-6700(01)00003-X
  6. F. J. Xu, S. J. Yuan, S. O. Pehkonen, E. T. Kang, and K. G. Neoh, NanoBiotechnology, 2, 123 (2006). https://doi.org/10.1007/BF02697267
  7. F. J. Xu, Q. J. Cai, E. T. Kang, and K. G. Neoh, Organometallics, 24, 1768 (2005). https://doi.org/10.1021/om049095u
  8. H. Hu, B. Yu, Q. Ye, Y. Gu, and F. Zhou, Carbon, 48, 2347 (2010). https://doi.org/10.1016/j.carbon.2010.03.014
  9. Y. Liu, Y. Chang, and M. Liang, Polymer, 49, 5405 (2008). https://doi.org/10.1016/j.polymer.2008.10.015
  10. Y. T. Joo, S. M. Jin, and Y. Kim, Polymer(Korea), 33, 452 (2009).
  11. Q. Zhao and H. D. Wagner, Phil. Trans. R. Soc. Lond. A, 362, 2407 (2004). https://doi.org/10.1098/rsta.2004.1447
  12. C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, J. Phys. Chem. B, 109, 11925 (2005). https://doi.org/10.1021/jp051642h
  13. S. Lefrant, M. Baibarac, and I. Baltog, J. Mater. Chem., 19, 5690 (2009). https://doi.org/10.1039/b821136a
  14. Y. Yang and Y. Dan, Colloid Polym. Sci., 281, 794 (2003). https://doi.org/10.1007/s00396-002-0845-2
  15. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H. Zhao, Langmuir, 25, 11808 (2009). https://doi.org/10.1021/la901441p
  16. S. Park, S. Chae, J. Rhee, and S. J. Kang, Bull. Korean Chem. Soc., 31, 2279 (2010). https://doi.org/10.5012/bkcs.2010.31.8.2279
  17. S. Okamura and T. Higashimura, J. Polym. Sci., 46, 539 (1960). https://doi.org/10.1002/pol.1960.1204614826
  18. H. Kong, C. Gao, and D. Yan, J. Am. Chem. Soc., 126, 412 (2004). https://doi.org/10.1021/ja0380493