적외선 감지를 위한 0~3 $PbTiO_3$/P(VDF/TrFE) 복합체 필름의 향상된 초전 특성

Improved Pyroelectric Characteristics of 0~3 $PbTiO_3$/P(VDF/TrFE) Composites Films for Infrared Sensing

  • 권성열 (부경대학교 전기공학과)
  • Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University)
  • 투고 : 2011.03.28
  • 심사 : 2011.06.08
  • 발행 : 2011.09.25

초록

두 단계 스핀 코팅 방법을 사용하여 세라믹 체적 분율 0.10과 0.13의 $PbTiO_3$/P(VDF/TrFE) 0~3형 복합재료를 제작하고 분석하였다. 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료를 SEM 전자현미경 사진으로 성공적으로 확인할 수 있었다. 이러한 전자현미경 사진을 통하여 복합재료의 0~3형 구조를 재확인하였다. 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료는 P(VDF/TrFE) 공중합체보다 센서용 전기적 특성이 우수함을 나타내었다. 그러므로 이러한 낮은 유전상수와 높은 초전계수를 나타내는 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료는 더 높은 성능을 나타낼 수 있는 새로운 초전형 센서 재료로 사용될 수 있다.

$PbTiO_3$/P(VDF/TrFE) 0~3 composites thin films with 0.10 and 0.13 of ceramic volume fraction factor have been fabricated by two-step spin coating technique and analyzed. 0~3 connectivity of $PbTiO_3$/P(VDF/TrFE) composites film was observed successfully by SEM micrography. The SEM picture confirmed 0~3 connectivity. And, in all the properties, 0~3 $PbTiO_3$/P(VDF/TrFE) composites film was superior to P(VDF/TrFE) copolymer. Therefore, with a good low-dielectric constant and a high pyroelectric coefficient, the composite thin films can be used for a new pyroelectric infrared sensor of higher performance.

키워드

참고문헌

  1. S. B. Lang, Source Book of Pyroelectricity, Gordon & Breach, London, 1974.
  2. J. H. Kim, T. K. Park, H. Lee, and D. J. Lee, Polymer (Korea), 3, 101 (1995).
  3. W. S. Kim, H. S. Song, B. O. Lee, K. H. Kwon, Y. S. Lim, and M. S. Kim, Macromol. Res., 10, 253 (2002). https://doi.org/10.1007/BF03218314
  4. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969). https://doi.org/10.1143/JJAP.8.975
  5. G. H. Kim, Macromol. Res., 12, 564 (2004). https://doi.org/10.1007/BF03218445
  6. J. G. Ryu, J. W. Lee, and H. Kim, Macromol. Res., 10, 187 (2002). https://doi.org/10.1007/BF03218304
  7. W. Ruppel, Sens. Actuators A, 31, 225 (1992). https://doi.org/10.1016/0924-4247(92)80109-G
  8. A. Lozinski, F. Wang, A. Uusimaki, and S. Leppavuori, Meas. Sci. Technol., 8, 33 (1997). https://doi.org/10.1088/0957-0233/8/1/005
  9. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969). https://doi.org/10.1143/JJAP.8.975
  10. R. J. Phelan, Jr., R. J. Mahler, and A. R. Cook, Appl. Phys. Lett., 19, 337 (1971). https://doi.org/10.1063/1.1653942
  11. D. Setiadi, P. P. L. Regtien, and P. M Sarro, Sens. Actuators A, 52, 103 (1996). https://doi.org/10.1016/0924-4247(96)80133-6
  12. S. Y. Kwon and K.-W. Kim, J. Korean Sensors Society, 3, 226 (1999).
  13. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull., 13, 525 (1978). https://doi.org/10.1016/0025-5408(78)90161-7
  14. Y. Xu, Ferroelectric Materials and Their Application, Elsevier Science Publishers B. V., Amsterdam, 1991.
  15. D. K. Das-Gupta, Ferroelectric Polymers and Ceramic- Polymer Composites, Trans Tech Publications, Switzerland, 1994.
  16. T.-W. Son, J.-H. Kim, W.-M. Choi, F.-F. Han, and O.-K. Kwon, Polymer(Korea), 35, 130 (2011).
  17. S.-K. Kim, J.-H. Ryu, H.-D. Kwen, C. H. Chang, and S.- H. Cho, Polymer(Korea), 34, 126 (2010).
  18. S. Y. Kwon, Journal of the Institute of Signal Processing and Systems(Korea), 3, 74 (2002).