실크 피브로인/젤라틴 하이브리드 지지체의 제조 및 특성분석

Preparation and Characterization of Silk Fibroin/Gelatin Hybrid Scaffolds

  • 김혜린 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 홍민성 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김수진 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 조한수 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 유일수 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Kim, Hye-Lin (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Hong, Min-Sung (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Kim, Su-Jin (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Jo, Han-Su (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Yoo, Il-Sou (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Lee, Dong-Won (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University) ;
  • Khang, Gil-Son (Department of BIN Fusion Technology, Department of Polymer.Nano Science Technology, Polymer Fusion Research Center, Chonbuk National University)
  • 투고 : 2010.09.30
  • 심사 : 2011.04.12
  • 발행 : 2011.09.25

초록

실크 피브로인은 생체적합성과 비독성 및 비면역 특성을 갖는 생분해성 천연고분자로서, 콜라겐의 가수분해로부터 유래되는 천연물질인 젤라틴을 이용하여 실크 피브로인/젤라틴 지지체를 제조하였다. 지지체의 최적화 조건을 찾기 위하여 실크 피브로인의 양과 젤라틴 및 글루타알데히드의 농도를 다르게 하여 제조하였다. 실크 피브로인/젤라틴 지지체는 SEM과 DSC 및 수분흡수성 평가를 통해 특성분석을 하였으며 세포생존율 및 증식률은 WST 방법을 통해 평가되었다. 이 결과 실크 피브로인 0.3 g 지지체에 8% 젤라틴 및 1% 글루타알데히드를 함유한 지지체에서 세포 부착 및 증식을 위해 가장 적합한 특성을 제공한다고 제안되었다. 결과적으로, 실크 피브로인/젤라틴 지지체는 잠재적인 세포 전달체 및 조직공학을 위한 구조 기반역할을 할 수 있을 것으로 사료된다.

Silk fibroin is a biocompatible and slowly biodegradable natural polymer. This natural polymer has excellent mechanical properties, non-toxicity, and non-immunogenic properties and has been demonstrated to support tissue regeneration. Also, gelatin is a natural material derived from collagen by hydrolysis and has an almost identical composition as that of collagen. Silk fibroin/gelatin scaffolds have been fabricated by using the freeze-drying method. To establish the scaffold manufacturing condition for silk fibroin and gelatin, we made scaffolds with various compositions of gelatin, glutaldehyde and silk fibroin. The silk fibroin/gelatin scaffolds were characterized using SEM, DSC, and water absorption ability tests. The cellular proliferation was evaluated by WST assay. These results suggested that a scaffold containing 8% of gelatin, 1% of glutaldehyde and 0.3 g of silk fibroin provided suitable characterstics for cell adhesion and proliferation. In conclusion, the silk fibroin/gelatin scaffold may serve as a potential cell delivery vehicle and a structural basis for tissue engineering.

키워드

참고문헌

  1. S. H. Kim, S. J. Yun, J. W Jang, M. S. Kim, G. Khang, and H. B. Lee, Polymer(Korea), 30, 14 (2006).
  2. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, and H. B. Lee, Polymer(Korea), 31, 14 (2007).
  3. G. Khang, S. J. Lee, M. S. Kim, and H. B. Lee, "Tissue Engineering", in Webster's Biomedical Engineering Handbook, S. Webster, Editor, John & Wiley Press, NY, p 366 (2006).
  4. J. H. Lee, S. J. Park, H. J. Chun, and C. H. Kim, Inter. J. Tissue Reg., 1, 1, (2010).
  5. G. Khang, J. M Rhee, J. H. Lee, I. Lee, and H. B. Lee, Macromol. Res., 8, 276 (2000).
  6. B. L. Seal, T. C. Pterom, and A. Panitch, Mater. Sci. Eng., 34, 147 (2001). https://doi.org/10.1016/S0927-796X(01)00035-3
  7. F. T. Moutos, L. E. Freed, and F. Guilak, Nature Materials, 6, 162 (2007). https://doi.org/10.1038/nmat1822
  8. W. H. Wong, D. J. Mooney, and A. Atala, Synthetic Biodegradable Polymer Scaffolds, Boston, MA, Birkhauser, Chap 4 (1996).
  9. L. Meinel, O. Betz, R. Fajardo, S. Hofmann, A. Nazarian, E. Cory, M. Hilbe, J. M. Cool, R. Langer, G. Vunjak-Novakovic, H. P. Merkle, B. Rechenberg, D. L. Kaplan, and C. Kirker- Head, Bone, 39, 4 (2006).
  10. L. Uebersaxa, M. Mattottia, M. Papaloïzosb, H. P. Merkle, B. Gander, and L. Meinel, Biomaterials, 28, 30 (2007).
  11. M. Garcia-Fuentesa, A. J. Meinela, M. Hilbeb, L. Meinel, and H. P. Merkle, Biomaterials, 30, 28 (2009).
  12. D. Ledward, P. Philips, and P. Williams, "Gelatin", in Handbook of Hydrocolloid, Boca Raton, CRC Press, p 67 (2000).
  13. V. Normand, S. Muller, J. C. Ravey, and A. Parker, Macromolecules, 33, 1063 (2000). https://doi.org/10.1021/ma9909455
  14. Y. J. Kim, Polymer(Korea), 32, 5 (2008).
  15. L. Zhensheng, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, Biomaterials, 26, 18 (2005).
  16. J. S. Mao, H. F. Liu, Y. J. Yin, and K. D. Yao, Biomaterials, 24, 1621 (2003). https://doi.org/10.1016/S0142-9612(02)00549-5
  17. A. Bigi, S. Panzavolta, and N. Roveri, Biomaterials, 19, 739 (1998). https://doi.org/10.1016/S0142-9612(97)00194-4
  18. H. L. Kim, S. J. Kim, H. Yoo, M. Hong, D. Lee, and G. Khang, Inter. J. Tissue Reg., 1, 81 (2010).
  19. H. L. Kim, H. Yoo, H. J. Park, Y. G. Kim, D. Lee, Y. S. Kang, and G. Khang, Polymer(Korea), 35, 7 (2011).
  20. A. Bigi, B. Braccia, G. Cojazzib, S. Panzavolta, and N. Roveri, Biomaterials, 19, 24 (1998).
  21. M. S. Choi, H. D. Han, H. Seong, E. S. Park, S. C. Chi, and B. C. Shin, J. Korean Chem. Soc., 50, 3 (2006). https://doi.org/10.1140/epjb/e2006-00112-3
  22. Y. S. Choi, S. B. Lee, S. R. Hong, Y. M. Lee, K. W. Song, and M. H. Park, J. Mater. Sci., 12, 67 (2001).
  23. H. K. Choi and J. H. Hahm, Korean J. Seric. Sci., 37, 142 (1995).
  24. H. Y. Kweon, K. Lee, J. Yeo, S. O. Woo. S. M. Han, Y. W. Lee, J. H. Lee, and Y. H. Park, Korean J. Seric. Sci., 46, 28 (2004).