DOI QR코드

DOI QR Code

쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology

  • 투고 : 2011.02.21
  • 심사 : 2011.03.15
  • 발행 : 2011.03.31

초록

마이크로 가스터빈의 높은 연료 다양성은 광범위한 범위의 적용처에 적용할 수 있도록 설계되었다. 최근에는 가스터빈 발전시스템의 연료로서, 유기성폐기물의 소화가스와 쓰레기 매립지로부터 발생되는 바이오 가스에 대한 수요가 증가하고 있다. 우리는 매립지 가스를 이용하여 마이크로 가스터빈 열병합 발전시스템의 성능특성 및 운전 특성에 대한 영향을 연구하고 있다. 메탄과 이산화탄소를 동시에 회수하는 공정을 개발하여 현장 실증 플랜트 규모로 시험을 수행하였으며, 유리온실에 농작물의 이산화탄소 고농도 집적을 목적으로 철-킬레이트 화합물을 기본으로 하는 액상촉매를 이용하여 매립지 가스내에 있는 불순물을 저렴한 비용으로 제거하고자 한다. Fe-EDTA(철-킬레이트)를 이용한 내부순환 다판식 기포탑 반응기에 의하여 농축정제와 이산화탄소 제거가 매립지 가스의 최적화 연료화를 추진하였다. 매립지가스의 유량은 0.207 $m^3$/min이고 5.5 kg/$cm^2$의 압력으로 공급되며 메탄농도 70%, 이산화탄소 27%로 공급되도록 농축반응기를 설계하였고 황화수소 99% 제거를 목표로 한다. 유리온실은 마이크로 가스터빈 배가스와 온수를 이용하여 대기중의 이산화탄소 농도에서 1500 ppm의 농도범위로 공급되도록 설계되었다.

The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

키워드

참고문헌

  1. Rodgers, C., Watts, J., Nichols, K. And Brent, R., 2001, Microturbines, in Distributed Generation, Borbely, A.M. And Kreider, J, Ed., Crc press, pp. 119-150.
  2. Haught, D, 2003, Microturbine Equipment, Panel Session Presented at ASME Turbo Expo 2003, June 16-19, Atlanta, Georgia, U.S.A.
  3. Ueda, T., 2006, "Biomass renewable energy in Japan" Journal of KORRA, Vol. 14, No. 4, pp. 36-45.
  4. Saravanamutto, H. I. H., Rogers, G. F. C. and Cohen, H., 2001, "Gas Turbine Theory", Fifth edition, Essex: Pearson Education Limited, pp. 37-85.
  5. U.S. Department Of Energy, 2000, Advanced Microturbine Systems, Program Plan For Fiscal Year 2000 Through 2006.
  6. 오종식, 이헌석, 2003, "분산발전용 75 kW급 마이크로터빈의 시제개발," 유체기계연구개발발표회 논문집, pp. 307-313.
  7. 김수용, 박무용, 최범석, 안국영, 최상규, 2003, "50 kW 마이크로 가스터빈 개발," 유체기계연구개발발표회 논문집, pp. 314-319.
  8. 권기훈, 김승우, 이시우, 2003, "분산형 마이크로터빈 열병합 발전시스템 개발," 유체기계연구개발발표회 논문집, pp. 320-327.
  9. UTC Power, http://www.utcpower.com/html/ microturbine.Shtml
  10. 이준희, 김동섭, 2004, "마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석," 대한설비학회 동계학술대회 논문집, pp. 131-138.
  11. Hur, K. B., Rhim S. K., and Park, J. K., 2005, "Performance Evaluation of Distributed Micro Gas Turbine(MGT) Co-generation Technology with Grid-connection", Proceeding of the ACGT, Seoul, Korea.
  12. McDonald, C. F., 2000, "Low-Cost Compact Primary Surface Recuperator Concept For Microturbines," applied Thermal Engineering, Vol. 20, pp. 471-497. https://doi.org/10.1016/S1359-4311(99)00033-2
  13. Lagerstrm, G. and Xie, M., 2002, "High Performance & Cost Effective Recuperator for Micro-Gas Turbines," ASME paper GT-2002-30402, ASME Turbo Expo 2002, Amsterdam, the Netherlands, June 3-6.
  14. Kang, Y. M. and McKeirnan, R., 2003, "Annular Recuperator Development and Performance Test for 200 kW Microturbine," ASME paper GT2003-38522, ASME Turbo Expo 2003, Atlanta, Georgia, June 16-19.
  15. Kesseli, J., Wolf, T., Nash, J. and Freedman, S., 2003, "Micro, Industrial, and Advanced Gas Turbines Employing Recuperators," ASME paper GT2003-38938, ASME Turbo Expo 2003, Atlanta, Georgia, June 16-19.
  16. 김동섭, 황성훈, 2004, "마이크로 가스터빈의 탈설계 운전성능특성," 유체기계저널, 제7권, 제3호, pp. 39-47.
  17. Kim, T. S., 2006, "Part Load Performance Analysis of Recuperated Gas Turbines Considering Engine Configuration And Operation Strategy," Energy, Vol. 31, pp. 260-277. https://doi.org/10.1016/j.energy.2005.01.014
  18. Hur, K. B., Rhim, S. K., Park, J. K., Lee, J. B., 2010. 3, "Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation", The Korean Society for New and Renewable Energy, Vol. 4, No. 1, pp. 37-43.
  19. Capstone Turbine Co., http://www.microturbine.com/Documents/C30.pdf
  20. 김동섭, 이종준, 2004, 마이크로 가스터빈 발전 시스템의 운전 성능분석," 유체기계저널, 제8권, 제5호, pp. 13-21.
  21. Yoon, G. G., Hur, K. B., Rhim, S. K., Kim, S. J. and Cho, H. R., 2006, "The power quality analysis of interconnection with the dispered Micro Gas Turbine", Proceeding of Electrical Engineering, & Technology, Yongpyeing, Korea.
  22. Hur, K. B., Rhim, S. K. and Park, J. K., 2006, "Performance Test of MGT Combined Heat & Power System", Proceeding of the Fourth National Congress on Fluids Engineering, Kyungju, Korea.
  23. Hur, K. B. and Kim, J. H., 2006. 9, "Study on the Performance Characteristics of MGT Co-generation System", Transactions of the Korean Society for Noise and Vibration Engineering Vol. 16, NO. 9, pp. 964-970. https://doi.org/10.5050/KSNVN.2006.16.9.964
  24. Hur, K. B., Rhim, S. K., Park, J. K. and Kim, J. H., 2007, "System Development of Micro Gas Turbine co-generation", Key Engineering Materials, Vols. 345-346, pp. 1003-1006. https://doi.org/10.4028/www.scientific.net/KEM.345-346.1003
  25. Hur, K. B. and Kim, J. H., 2007. 5, "Evaluation of Operation Reliability for Micro Gas Turbine(MGT) Power Generation System", Transactions of the Korean Society for Noise and Vibration Engineering Vol. 17, NO. 5, pp. 448-455. https://doi.org/10.5050/KSNVN.2007.17.5.448
  26. Hur, K. B., Rhim, S. K., Park, J. K. and Kim, J. H., 2008. 3, "Test Evaluation of Pretreatment System Material for Bio-gas Micro Gas Turbine Power Generation", The Korean Society for New and Renewable Energy, Vol. 4, No. 1, pp. 37-43.
  27. Hur, K. B., Rhim, S. K. and Park, J. K., 2009.11.5, "Integrated design of bio micro gas turbine co-generation system", COmputational Design in Engineering 2009, Seoul, pp. 466-469.