• Title/Summary/Keyword: Green House

Search Result 964, Processing Time 0.022 seconds

The Effect of Light Quality on the Major Components of Hot Pepper Plant (Capsicum annuum L.) Grown in Polyethylene Film House -I. Growth and Development- (신미종(新味種) 고추의 Polyethylene Film House 재배시(栽培時) 주요성분(主要成分)에 미치는 Light Quality의 영향 -I. 생육상태(生育狀態)-)

  • Kim, Kwang-Soo;Roh, Seung-Moon;Kim, Soon-Dong;Lee, Sung-Woo;Yoon, Tai-Hyeon
    • Applied Biological Chemistry
    • /
    • v.20 no.3
    • /
    • pp.296-299
    • /
    • 1977
  • The blue, green, and red colored polyethylene film was used as a covering material for house grown pepper production to compare with the white film. Plant height was the tallest in red PE house(78.8 cm) followed by white, blue, and green PE house. The leaf weight was 0.40g in white PE house and 0.39g in red PE house which was higher than the weight in blue and green PE house. Fruiting percentage was 48.0% and 46.1% in white and red PE house, respectively, however no fruit was set in blue and green PE house. The fruit weight was 3.32g and 2.81g, in red and white PE house, respectively. The K, Ca, Mg, and Fe content in the leaf was the lowest in plants grown in white PE house. The content of K, Ca, Mg, and Fe was the highest in plants grown in green PE house.

  • PDF

A Study on the Greenhouse Gas Intensity of Building Groups and Regional in Korea (국내 에너지다소비건물의 용도별.지역별 온실가스 배출원단위분석 연구)

  • Lee, Chung-Kook;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.162-169
    • /
    • 2012
  • Our country set the mid-term reduction goal of greenhouse gases up to 2020 in accordance with Bali roadmap agreed in 2007 through the negotiation with UNFCCC in 2009 and specified the proper goal as by the Basic Act on Green Growth that went into effect at April, 2010. First of all the enlargement of green building construction has been suggested as a worldwide strategy to achieve the green house gas reduction. Building area is one of most important sectors for the countermeasure of climate change agreement and the achievement of national green house gas reduction goal and the need to reduce its green house gases has been increased accordingly. The objective of the study is to examine the status and characterization of mass energy consumption local governmental buildings' green house gas emissions depending on usage (hotel, school, apartment, hospital) through the green house gas emission source unit analysis. The result indicated that the energy source unit was proportional to green house gas source unit and hotel showed the highest green house gas emission source unit per open area of construction unit, followed by hospital, apartment, and then school. In case of apartment, green house gas emission source unit per open area of construction unit decreased as year went on. Meanwhile school building showed a striking increase in the annual energy source unit.

An Establishment of Greenhouse Gas Information System using Excel Spreadsheets (엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

Investment Analysis of the Modernized Green Houses in Korea (현대화 온실의 투자분석)

  • Lee, Kwang-Won;Lim, Jae-Hwan;Lee, Doo-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.170-181
    • /
    • 1997
  • The number of modernized green houses have been increased to produce high quality and high-payoff farm products. The unit investment costs per pyeong($3.3058m^2$) for building a glass house was estimated at 449 thousand won. On the other hand, the unit prices for the PC house with iron frame and the vynil house with automatic control system were revealed 365 thousand won and 93 thousand won respectively. The main objective of the study was to identify the financial feasibility of the green house investment prevailed in rural area. At present, some farmers have selected the green house without any consideration of profitability of crops and accessiblity of their fanning practices and technology. For the soundness of green house cultivation and management, the indices of finacial efficiency for the modernized green houses were necessary. The decesion making criteria such as NPV(Net Present Value), IRR(Internal Rate of Return), B/C Ratio and Payback Period were analyzed for the individual high investment facilities considering the present farmer's technology and on-farm benefits and costs. The results of the feasibility analysis of green houses were as follows: 1. In case of 100% private burden of the investment costs, NPV revealed only positive value for the vinyl house with automatic system and IRR for the house was also estimated at more than 10% and B/C Ratio was amounted to more than 1.0. On the other hand, the other glass and PC houses showed negative NPV and unacceptable B/C ratio and IRR. 2. In case of the following terms and conditions as 50% Government subsidy, 20% loans and 30% farmers burden of the total investment cost, all the green houses showed acceptable IRR, B/C Ratio and NPV. 3. The financial feasibility of the glass house was acceptable in tomato cultivation rather than in cucumber cultivation. The payback periods of cucumber were represented as 8.9 years for glass house, 8.5 years for PC house and 4.1 years for vinyl house with automatic system respectively. In conclution, the glass and PC house cultivation of high value vegetables were only acceptable under the Goverment subsidy and loan systems from the view point of farmer's financial situations. On account of the unacceptable economic rate of return, the government subsidy and loan policy for glass house cultivation should be transfered to the vinyl and pc houses in the future.

  • PDF

Reduction of Green House Gases by Bioenergy Supplying in Korea (국내 바이오에너지 보급에 따른 온실가스 저감 평가)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.

Physiological Characteristics and Seedling Growth Patterns of Neem (Azadirachta indica A. Juss) under Different Soil Conditions

  • Ghimeray, Amal Kumar;Wu, Jin-Cheng;Sharma, Pankaja;Park, Chol-Ho;Cho, Dong-Ha
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.528-534
    • /
    • 2009
  • The study of germination and seedling growth characteristics of Neem under different soil and environment conditions was undertaken. The seed germination started 8 days after sowing in commercial bed soil, whereas, delayed germination was observed in sandy-loam (15 days) and sandy (19 days) soil. The highest germination (73.33%) was observed in commercial bed soil in green house, whereas, the lowest germination was observed in sandy soil (16.67%) and sandy-loam soil (8.33%). The seeds in the open field (sandy soil) also showed poor (10%) germination. The mean number of germination seed/day (GD) and seed germination vigor rate (GV) both were highest in the commercial bed soil with 0.733% and 16.67% respectively in the green house, whereas sandy and sandy-loam soil in green house and open field (sandy soil) all showed much lower GD and GV values. The seedling characteristics of nursery revealed that the seedling grown in the growth chamber in commercial bed soil was significantly higher in all the parameters comparing to others grown in green house and open field. The growth was nearly 7 fold in the chamber compared to that of the green house nursery observed in three months old seedlings. Likewise, HPLC analysis revealed that the green house grown seedling contain higher quantity of pigments compare to the chamber grown seedlings. Among the soils used the commercial soil alone or in combination with sandy and sandy-loam soil in the ratio of 2:1:1 respectively with the temperature of $27{\pm}2^{\circ}C$ showed better for Neem nursery preparation.

Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery (공간패턴을 이용한 자동 비닐하우스 추출방법)

  • Lee, Jong-Yeol;Kim, Byoung-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • This paper introduces a novel approach for automated mapping of a map feature that is vinyl green house in high spatial resolution imagery Some map features have their unique spatial patterns. These patterns are normally detected in high spatial resolution remotely sensed data by human recognition system. When spatial patterns can be applied to map feature identification, it will improve image classification accuracy and will be contributed a lot to feature identification. In this study, an automated feature identification approach using spatial aucorrelation is developed, specifically for the vinyl green house that has distinctive spatial pattern in its array. The algorithm aimed to develop the method without any human intervention such as digitizing. The method can investigate the characteristics of repeated spatial pattern of vinyl green house. The repeated spatial pattern comes from the orderly array of vinyl green house. For this, object-based approaches are essential because the pattern is recognized when the shapes that are consists of the groups of pixels are involved. The experimental result shows very effective vinyl house extraction. The targeted three vinyl green houses were exactly identified in the IKONOS image for a part of Jeju area.

Changes in Parks and Green Spaces Ratio According to Land Ownership Processing Method in Urban Development

  • Lee, Sang Jo;Huh, Keun Young;Chung, Jae Woo
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.545-555
    • /
    • 2018
  • The purpose of this study was to analyze land use plans of 61 residential complexes and identify the factors that caused the variation of urban parks and green space ratio depending on the land ownership processing method. The ratio of urban parks and green space of expropriation districts was higher than that of replotting districts. Within the same city and country as well as other regions, the parks and green space ratio of land expropriation districts increased higher than 7% compared to that of replotting districts. The variation of urban parks and green space ratio was mainly related to the ratio of road. Small housing complexes such as detached house and quasi-residential sites resulted to expand space for road construction, thus, the areas of urban parks or green space came to reduce. The average urban parks and green space ratio in the urban development by the expropriation method and replotting method are 24.5% and 16.8% respectively. In order to prevent the reduction of urban parks and green space ratio according to the preference of detached house sites or quasi-residential sites in development zones, it is necessary to make systematic adjustment such as adjusting the urban parks and green space ratio securing standard.

Effects of Green Manure Cropping on Soil Biomass-C and Soil Fertility in Green House Soil (시설 하우스 토양에서 녹비작물 재배가 Biomass-C와 양분변화에 미치는 영향)

  • Lee, Byung-Jin;Yoon, Tae-Hyun;Cho, Woo-Tae;Jun, Hyun Sik;Cho, Young-Son
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.647-657
    • /
    • 2013
  • This experiment was done to evaluate the effects of green manure cropping in green house soil on the changes of soil nutrients and soil microorganisms. The biomass of green manure crop was the highest in ryegrass and nitrogen absorption was the highest in hairy vetch. After cropping, soil phosphate content was the lowest in ryegrass, however, biomass C was the highest of all the green manures. Nitrogen uptake of plant and nitrogen content of the soil after the experiment showed a negative correlation. Total N content of soil was increased in hairy vetch plot, but decreasing tendency showed in the ryegrass and common crabgrass plots. In this results are summarized that green manure cropping greatly reduced salt accumulation in green house.

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.