DOI QR코드

DOI QR Code

Low-Firing Pb(Zr,Ti)O3-Based Multilayer Ceramic Actuators Using Ag Inner Electrode

  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Park, Eon-Cheol (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Yoon, Jong-Il (School of Mechanical Engineering, University of Ulsan) ;
  • Ahn, Kyoung-Kwan (School of Mechanical Engineering, University of Ulsan)
  • Received : 2011.06.29
  • Accepted : 2011.10.24
  • Published : 2011.12.25

Abstract

We investigated the low firing of $Li_2CO_3$ added $0.2Pb(Mg_{1/3}Nb_{2/3})O_3$ - 0.3Pb($Fe_{1/2}Nb_{1/2}$) - $0.5Pb(Zr_{0.475}Ti_{0.525})O_3$ (PMN-PFN-PZT) ceramics and multilayer actuators (MLAs) using Ag inner electrodes. It was found that 0.1 wt% $Li_2CO_3$ was quite effective in lowering the sintering temperature of PMN-PFN-PZT ceramics from $1,100^{\circ}C$ down to $900^{\circ}C$ without deteriorating their piezoelectric ceramics ($d_{33}$ = 425 pC/N and $k_p$ = 61.9%). However, excess $Li_2CO_3$ up to 0.3 wt% brings about unwanted problems such as the formation of a $LiPbO_2$ secondary phase and subsequent degradation in the piezoelectric properties. Using 0.1 wt% $Li_2CO_3$ added PMN-PFN-PZT ceramics, MLAs with Ag inner electrodes were successfully fabricated, resulting in a normalized strain of 580 pm/V at an electric field of 1.5 kV/mm.

Keywords

References

  1. K. Uchino, Ferroelectric Devices, 2nd ed. (CRC Press, Boca Raton, 2010).
  2. M. M. Schwartz, Smart Materials (CRC Press, Boca Raton, 2009).
  3. J. Pritchard, C. R. Bowen, and F. Lowrie, Br. Ceram. Trans. 100, 265 (2001). https://doi.org/10.1179/096797801681549
  4. K. Uchino and S. Takahashi, Curr. Opin. Solid State Mater. Sci. 1, 698 (1996) [http://dx.doi.org/10.1016/s1359-0286(96)80054-4].
  5. W. Zhu, Z. Wang, C. Zhao, O. K. Tan, and H. H. Hng, Jpn. J. Appl. Phys. 41, 6969 (2002) [http://dx.doi.org/10.1143/JJAP.41.6969].
  6. S. Kwon, E. M. Sabolsky, and G. L. Messing, J. Am. Ceram. Soc. 84, 648 (2001) [http://dx.doi.org/10.1111/j.1151-2916.2001.tb00716.x].
  7. J. S. Lee, M. S. Choi, N. V. Hung, Y. S. Kim, I. W. Kim, E. C. Park, S. J. Jeong, and J. S. Song, Ceram. Int. 33, 1283 (2007) [http://dx.doi.org/10.1016/j.ceramint.2006.04.017].
  8. Y. H. Kim, D. Y. Heo, W. P. Tai, and J. S. Lee, J. Korean Ceram. Soc. 45, 363 (2008). https://doi.org/10.4191/KCERS.2008.45.6.363
  9. J. S. Lee, E. C. Park, S. H. Lee, D. S. Lee, Y. J. Lee, J. S. Kim, I. W. Kim, and B. M. Jin, Mater. Chem. Phys. 90, 381 (2005) [http://dx.doi.org/10.1016/j.matchemphys.2004.09.035].
  10. T. Hayashi, J. Tomizawa, T. Hasegawa, and Y. Akiyama, J. Eur. Ceram. Soc. 24, 1037 (2004) [http://dx.doi.org/10.1016/s0955-2219(03)00497-7].
  11. X. Chao, Z. Yang, Y. Chang, and M. Dong, J. Alloys Compd. 477, 243 (2009) [http://dx.doi.org/10.1016/j.jallcom.2008.10.096].
  12. J. Yoo, C. Lee, Y. Jeong, K. Chung, D. Lee, and D. Paik, Mater. Chem. Phys. 90, 386 (2005) [http://dx.doi.org/10.1016/j.matchemphys.2004.09.036].
  13. X. Chao, D. Ma, R. Gu, and Z. Yang, J. Alloys Compd. 491, 698 (2010) [http://dx.doi.org/10.1016/j.jallcom.2009.11.048].
  14. C. H. Nam, H. Y. Park, I. T. Seo, J. H. Choi, S. Nahm, and H. G. Lee, J. Alloys Compd. 509, 3686 (2011) [http://dx.doi.org/10.1016/j.jallcom.2010.12.163].
  15. S. Kang, C. Ahn, H. Lee, I. Kim, E. Park, and J. Lee, J. Electroceram. 21, 855 (2008) [http://dx.doi.org/10.1007/s10832-008-9507-1].
  16. L. Li, Key Eng. Mater. 214-215, 49 (2002) [http://dx.doi.org/10.4028/www.scientific.net/KEM.214-215.49].
  17. S. L. Swartz, T. R. Shrout, W. A. Schulze, and L. E. Cross, J. Am. Ceram. Soc. 67, 311 (1984) [http://dx.doi.org/10.1111/j.1151-2916.1984.tb19528.x].
  18. W. D. Callister, Materials Science and Engineering: An Introduction, 6th ed. (John Wiley & Sons, New York, 2003) p. 620.
  19. J. S. Lee, M. S. Choi, H. S. Han, Y. M. Kong, S. Kim, I. W. Kim, M. S. Kim, and S. J. Jeong, Sens. Actuators A: Phys. 154, 97 (2009) [http://dx.doi.org/10.1016/j.sna.2009.06.003].
  20. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004) [http://dx.doi.org/10.1038/nature03028].
  21. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang, J. S. Lee, and I. W. Kim, Trans. Electr. Electron. Mater. 12, 64 (2011) [http://dx.doi.org/10.4313/TEEM.2011.12.2.64].

Cited by

  1. Lead-free piezoceramics – Where to move on? vol.2, pp.1, 2016, https://doi.org/10.1016/j.jmat.2015.12.002
  2. Stabilization of the relaxor phase by adding CuO in lead-free (Bi 1/2 Na 1/2 )TiO 3 ‒SrTiO 3 ‒BiFeO 3 ceramics vol.43, pp.14, 2017, https://doi.org/10.1016/j.ceramint.2017.05.152
  3. Low-temperature sintering of lead-free Bi1/2(Na,K)1/2TiO3-based electrostrictive ceramics with CuO addition vol.61, pp.6, 2012, https://doi.org/10.3938/jkps.61.899
  4. Low Temperature Sintering of PZT vol.557, 2014, https://doi.org/10.1088/1742-6596/557/1/012132
  5. Enhanced electrical properties of co-firing 0.7Pb(Zr0.46Ti0.54)O3–0.1Pb(Zn1/3Nb2/3)O3–0.2Pb(Ni1/3Nb2/3)O3 multilayer thick films prepared by screen-printing method vol.159, 2015, https://doi.org/10.1016/j.matlet.2015.06.077
  6. Electrical Properties of CuO-Doped PZT-PZN-PMnN Piezoelectric Ceramics Sintered at Low Temperature vol.02, pp.11, 2014, https://doi.org/10.4236/msce.2014.211004
  7. PNN-PZN-PMN-PZ-PT Multilayer Piezoelectric Ceramic with Low Sintering Temperature vol.13, pp.5, 2016, https://doi.org/10.1111/ijac.12558
  8. Achieving both high d 33 and high T C in low-temperature sintering Pb(Ni 1/3 Nb 2/3 )O 3 –Pb(Mg 1/2 W 1/2 )O 3 –Pb(Zr 0.5 Ti 0.5 )O 3 ceramics using Li 2 CO 3 vol.85, 2017, https://doi.org/10.1016/j.materresbull.2016.08.010
  9. The free-standing multilayer thick films of 0.7Pb(Zr0.46Ti0.54)O3–0.1Pb(Zn1/3Nb2/3)O3–0.2Pb(Ni1/3Nb2/3)O3 with low co-fired temperature vol.29, pp.14, 2018, https://doi.org/10.1007/s10854-018-9263-1