DOI QR코드

DOI QR Code

Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite)

섬유보강 콘크리트(ECC)와 GFRP 보강근의 부착 특성

  • Choi, Yun-Cheul (Dept. of Architectural Environmental Engineering and Building Service, ChungWoon Univ.) ;
  • Park, Keum-Sung (Korea Institute of Construction Technology) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Hyun-Ki (Dept. of Architectural Engineering, Hanyang University)
  • 최윤철 (청운대학교 건축설비소방학과) ;
  • 박금성 (한국건설기술연구원 건축도시연구본부) ;
  • 최창식 (한양대학교 건축공학부) ;
  • 최현기 (한양대학교 건축공학부)
  • Received : 2011.09.15
  • Accepted : 2011.11.02
  • Published : 2011.12.31

Abstract

An experimental investigations on the bond-slip properties of the steel and Glass Fiber Reinforced Polymer(GFRP) bars in engineered cementitious composite (ECC) with Polyvinyl Alcohol (PVA) fibers are presented. Total of 8 beam specimens prepared according to the Rilem procedures with 2% of PVA and PE fiber volume percentage and steel and GFRP reinforcements significantly changed the failure mechanism and slightly improved bond strength. The main objective of the tests was to evaluate the load versus displacement and load versus slip behaviors and the bond strength for the following parameters: concrete type (normal and fiber concrete) and bar diameter (10 and 13 mm). The study results showed that ordinary concrete and ECC specimens showed similar behavior for steel reinforced specimen. However, GFRP reinforced specimen showed different behavior that the steel specimen. The code analytical results showed more accuracy compared to the experimental results as expected in conservative code provisions. Based on the obtained results, it is safe to conclude that the new parameters need to be adopted to ensure safe usage of ECC for construction applications.

철근과 GFRP bar의 콘크리트 및 PVA가 사용된 ECC에서의 부착-미끌림 관계를 실험을 통해 평가하였다. 총 8개의 최대하중 발현 이후 파괴 모드가 크게 변경되고 부착강도의 증진을 예상할 수 있는 PVA 및 PE가 2% 부피비로 혼입된 ECC로 제작된 RILEM 기준에 따른 실험체가 제작되었다. 이 연구의 목적은 ECC 및 GFRP가 사용되었을 경우 하중-변위 관계 및 부착응력-미끌림 관계를 다음과 같은 변수에 따라 파악하는 것이다. 1) 콘크리트의 종류(보통 콘크리트, 섬유보강 콘크리트), 2) 보강근의 직경(10 mm, 13 mm) 실험 결과 콘크리트와 ECC는 철근에 대한 실험체는 유사한 거동을 하였지만 GFRP에 대해서는 서로 다른 거동을 보였다. 기존 연구로 제안된 평가 방법은 실험 결과와 유사한 값을 나타내었지만 부착강도를 과대평가하는 경향을 보였으며 설계기준으로도 사용되는 ACI 위원회 제안식은 보수적인 결과를 타나내었다.

Keywords

References

  1. Pecce, M., Manfredi, G., and Cosenza, E., "Experimental Response and Code Models of GFRP RC Beams in Bending," J. Composite Structures, Issue 44, 2000, pp. 182-190.
  2. Abdalla, H. A., "Evaluation of Deflecton in Concrete Members Reinforced with Fibre Reinforced Polymer (FRP) Bars," Composite Structures, Vol. 56, Issue 1, 2002, pp. 63-71. https://doi.org/10.1016/S0263-8223(01)00188-X
  3. Benmokrane, B., Chaallal, O., and Masmoudi, R., "Flexural Response of Concrete Beams Reinforced with FRP Reinforing Bars," Composite Structures, Vol. 93, No. 1, 1996, pp. 46-55.
  4. 신성우, 안종문, 한범석, 서대원, "FRP 보강근을 주근으로 사용한 콘크리트보의 보강비효과," 대한건축학회논문집, 22권, 2호, 2006, pp. 16-19.
  5. 이정윤, 이종구, 김태영, 박지선, 박영환, "GFRP 보강근의 부착파괴면," 콘크리트학회 논문집, 20권, 3호, 2008, pp. 383-391. https://doi.org/10.4334/JKCI.2008.20.3.383
  6. 박찬기, 원종필, 차상선, "보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 GFRP 보강근의 부착특성," 콘크리트학회 논문집, 21권, 3호, 2009, pp. 275-282. https://doi.org/10.4334/JKCI.2009.21.3.275
  7. 김병일, "철근 및 GFRP 보강근의 부착계면에서 할렬균열의 성장억제에 대한 ECC의 효과," 대한건축학회 논문집, 26권, 12호, pp. 133-140.
  8. ACI Report 440H, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, American Concrete Institute Committee 440, 2000, pp. 10-30.
  9. Somboonsong, W., Harris, H. G., and Ko, K., "Ductile Hybrid Fibre Reinforced Plastic Reinforcing Bar for Concrete Structures: Design Methodology," ACI Materials Journal, Vol. 95, No. 6, 1998, pp. 655-666.
  10. Won, J. P., Park, C. G., Kim, H. H., Lee, S. W., and Won, C., "Bond Behavior of FRP Reinforcing Bars in High-Strength Steel Fibre-Reinforced Concrete," Polymers & Polymer Composites, Vol. 15, No. 7, 2007, pp. 569-578.
  11. Li, V. C. and Wu, H. C., "Conditions for Pseudo Strain-Hardening in Fiber Reinforced Brittle Matrix Composite," Journal Applied Mechanics, Vol. 45, No. 8, 1992, pp. 390-398. https://doi.org/10.1115/1.3119767
  12. 유영찬, 박지선, 유영준, 박영환, 김긍환, "GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발," 콘크리트학회 논문집, 17권, 6호, 2005, pp. 947-953. https://doi.org/10.4334/JKCI.2005.17.6.947
  13. Rilem-Fip-Ceb, "Bond Test for Reinforcing Steel: 1-Beam Test (7-II-28 D). 2-Pullout Test (7-II-128): Tentative Recommendations," Materials and Structures, Vol. 6, No. 32, 1973, pp. 96-105.
  14. Soroushian, P., Mirza, F., and Alhozaimy, A., "Bonding of Confined Steel Fiber Reinforced Concrete to Deformed Bar," ACI Material Journal, Vol. 91, No. 2, 1994, pp. 141-149.
  15. American Concrete Institute (ACI), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-06, 2010, pp. 28-30.
  16. Okelo, R. and Yuan, R. L., "Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete," Journal of Composite Construction, Vol. 9, No. 3, 2005, pp. 203-213. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203)

Cited by

  1. Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments vol.25, pp.2, 2013, https://doi.org/10.4334/JKCI.2013.25.2.137
  2. Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber vol.24, pp.6, 2012, https://doi.org/10.4334/JKCI.2012.24.6.761