• Title/Summary/Keyword: 부착 강도

Search Result 1,413, Processing Time 0.033 seconds

Bond Properties of High Strength Steel Rebar in High Strength Steel Fiber Reinforced Concrete (강섬유 보강 고강도콘크리트와 고장력 철근의 부착 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Jang, Chang-Il;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.631-637
    • /
    • 2007
  • This study was to evaluate bond properties between high-strength steel fiber reinforced concrete and high strength steel rebar. An direct bond test were performed to evaluate the bond performance of high strength steel rebar in two types of high-strength concrete with steel fiber volume fraction (0, 20, $40kg/m^3$). Also, relative bond strength was defined to determine the effect of steel fiber volume fraction on bond strength. The bond test results showed that the bond performance of high strength steel rebar and high strength concrete tended to increase with higher compressive strength and steel fiber volume fraction. Relative bond strength which performed to analyze effect of steel fiber volume fraction showed increased relative bond strength with increased steel fiber volume fraction.

A FEM analysis on the Bond Properties of High Strength Concrete (고강도콘크리트의 부착특성에 관한 유한요소해석)

  • 홍건호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.175-183
    • /
    • 1998
  • 고강도콘크리트의 역학적 특성은 그 압축강도의 증가 이외에도 여러 가지 변화를 갖게 된다. 본 연구에서는 이와 같은 여러 특성의 변화 중 철근과의 부착특성에 관한 해석적 접근을 통하여 고강도콘크리트부재의 부착설계를 위한 이론적인 접근을 시도하였다. 해석의 변수로는 콘크리트의 압축강도, 부착길이 및 피복두께 등 3가지의 변수를 선정하였으며, 해석의 목적은 본 연구에 앞서 실시된 실험의 결과를 예측할 수 있는 단순화된 모델을 개발하고 이를 이용하여 부착실험의 결과를 해석적으로 분석하도록 하였다. 이에 따라 사용된모델은 실험에서 사용한 보단부형 부착시험체의철근과 콘크리트 부착부분의 기하학적 형상을 비교적 실제와 유사하게 모델링시킨 2차원의 평면모델을 사용하였다. 본 연구의 주요결과를 살펴보면 고강도콘크리트의 부착강도는 콘크리트의 피복두께에는 선형으로 비례하게 되나 부착길에는 비례하지 않는 것으로 나타났다. 이와 같은 결고는 기존의 실험결과와도일치하고있으며, 그 원인은 콘크리트의 강성증가에 따라 하중단측에 응력이 집중됨으로써 보통강도콘크리트의 경우와 같이 응력의 균등한 배분을 기대할 수 없기 때문으로 나타났다.

Bond Strength Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이주형;최상릉;김기헌
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.507-515
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex. This study focuses on the investigation of bond strength of latex modified concrete. Pull-out bond test and uniaxial direct tensile bond test are adopted for evaluating the adhesion characteristics of latex modified concrete to conventional concrete substrate. The main experimental variables are test methods, latex-cement ratio, surface preparations and moisture levels. The results are as follows; The increase of latex-cement ratio substantially improves the adhesion between latex modified concrete and substrate. The effects of surface preparation at substrate into the bonding of latex modified concrete are quite different according to the conditions of surfaces. Thus, an adequate surface preparations are essential for good bond strength. Because the moisture level of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete has evaluated in this study. The saturated condition of surface is the most appropriate moisture level among the considered, followed by dry condition and wet condition.

Adhesive Shear Strength of Carbon Fiber Sheet (탄소섬유시트의 전단부착강도에 관한 연구)

  • Kim, Yoon-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • In order to test the adhesive capacity of carbon fiber sheet, a static loading method for bending-behavior-type beam specimens, cut in half was developed and test was conducted with compressive strength of concrete set as the test parameter. The tests were performed to prescribe adhesive shear strength based upon the result of shear failure as well as verification of testing method. First of all, the test method proved to be reliable in determining the adhesive shear strength. The test result also exhibited two types of variations in adhesive shear strength. Among two types of variations, average and minimum values for adhesive shear strength, relatively stable results, 3.41MPa and 2.11MPa, respectively. Particularity in the adhesive shear strength with respect to compressive shear strength was not found.

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.

A Study on the Bond Properties of High Strength Concrete (고강도콘크리트의 부착특성에 관한 연구)

  • 홍건호;신영수;정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.156-162
    • /
    • 1996
  • The purpose of this study is to find experimentally bond properties of deformed bars in high strength concwtc. Bond properties of deformed bars in high strength concrete are tested i n tensile stress state. Eighty beam-end specimens are used for this experiment. Concrete compressive strength is used as main experimental variable, in addition a few variables affecting bond properties are used : bond length, cover thickness and bar diameter. The principal results obtained from this study are as follows ; - Bond strength is not proportionate to bond length in high strength concrete. The rate of bond strength increase followed by bond length rapidly diminish according to concrete strength increase. The reason is analyzed in FEM analysis that bond stress is not uniformly distributed in high strength concrete and concentrate on loading area. - Bond strength is linearly proportionate to cover thickness without regard to concrete strength. Especially the rate of strength increase is gradually increased by concrete strength.

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.

The Experimental Study on the Suggestion for Bond Strength Standard of Sprayed Fire Resistive Materials Used at the Substation Steel Structures (변전소 철골 내화뿜칠 부착강도 기준설정에 관한 실험적 연구)

  • Park, Dong-Su;Joung, Won-Seoup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.128-137
    • /
    • 2014
  • Sprayed fire resistive materials are mainly used at steel structures to satisfy fireproof construction standard. However, the regulations on bond strength have been not considered with the exception of structures in the nuclear power plants, although it is an important factor showing material properties. Therefore, this paper suggested guidelines for bond strength of sprayed fire resistive materials used in the substation, by measuring bond strength according to aging of structures and impact loading considering environment of substations. It is judged that the bond strength suggested in this paper is the minimum value because it was measured from specimens widely used.