• 제목/요약/키워드: least trimmed squares estimation

검색결과 7건 처리시간 0.02초

Limiting Distributions of Trimmed Least Squares Estimators in Unstable AR(1) Models

  • Lee, Sangyeol
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.151-165
    • /
    • 1999
  • This paper considers the trimmed least squares estimator of the autoregression parameter in the unstable AR(1) model: X\ulcorner=ØX\ulcorner+$\varepsilon$\ulcorner, where $\varepsilon$\ulcorner are iid random variables with mean 0 and variance $\sigma$$^2$> 0, and Ø is the real number with │Ø│=1. The trimmed least squares estimator for Ø is defined in analogy of that of Welsh(1987). The limiting distribution of the trimmed least squares estimator is derived under certain regularity conditions.

  • PDF

비대칭 오차모형하에서의 회귀기울기에 대한 적합된 L-추정법 (Adaptive L-estimation for regression slope under asymmetric error distributions)

  • 한상문
    • 응용통계연구
    • /
    • 제6권1호
    • /
    • pp.79-93
    • /
    • 1993
  • 회귀모형에 있어서의 Ruppert와 Carroll의 절사 회귀 추정법을 확장하여 회귀 분위수에 의 한 두 개의 두분으로 관측치를 분할하여 각 부분마다 가중치를 달리 부여하는 방법으로 적 합된 L-추정법을 제안하였다. 이 제안된 L-추정법은 특히 비대칭인 오차분포하에서 좋은 효율을 가지고 있었다.

  • PDF

로버스트주성분회귀에서 최적의 주성분선정을 위한 기준 (A Criterion for the Selection of Principal Components in the Robust Principal Component Regression)

  • 김부용
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.761-770
    • /
    • 2011
  • 회귀모형에 연관성이 높은 설명변수들이 포함되면 다중공선성의 문제가 야기되며, 동시에 자료에 회귀 이상점들이 포함되면 최소자승추정량에 바탕을 둔 제반 통계적 추론은 심각한 결함을 갖게 된다. 이러한 현상들은 데이터마이닝 분야에서 많이 볼 수 있는데, 본 논문에서는 두 가지 문제를 동시에 해결하기 위한 방안으로서 로버스트주성분회귀를 제안하였다. 특히 최적의 주성분을 선정하기 위한 새로운 기준을 개발하였는데, 설명변수들의 표본공분산 대신에 MVE-추정량을 기반으로 하였으며, 고유치가 아니라 상태지수의 크기에 바탕을 둔 선정기준을 제안하였다. 그리고 주성분모형에서의 추정을 위하여 회귀이상점에 대해 로버스트한 LTS-추정을 도입하였다. 제안된 선정기준이 기존의 기준들보다 다중공선성과 이상점이 유발하는 문제들을 잘 해결할 수 있음을 모의실험을 통하여 확인하였다.

뇌파 분석을 위한 LTS 추정기법을 이용한 시계열 데이터의 효율적인 프랙탈 차원 추정 (Efficient Estimation of the Fractal Dimension from Time Series Data Using LTS (Least Trimmed Squares) Estimator for EEG (Encephalogram) Analysis)

  • 이광호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.78-80
    • /
    • 1998
  • 본 논문은 일차원의 시계열 데이터를 입력을 하여 위상공간 재구성 과정을 거쳐 다차원 위상공간상에서 프랙탈 차원을 계산하는 효율적인 방법을 제안한다. 프랙탈 차원의 추정에 소요되는 계산량을 줄이기 위해 로그 연산을 비트 연산으로 대체하고, 거리계산의 순서를 바꿈으로써 위상공간의 차원에 무관한 상수 시간의 계산복잡도를 가지는 알고리즘을 구현하였다. 또한 최소절단자승 추정기법을 적용하여 로그-로그 그래프 상에서의 기울기 추정을 함으로써 프랙탈 차원의 추정치에 대한 정확도를 높였다. 참값이 알려진 시계열 데이터에 대한 차원 추정 실험을 통하여 제안된 방법의 정확성을 보였다.

  • PDF

AR(1) 모형의 모수에 대한 L-추정법 (L-Estimation for the Parameter of the AR(l) Model)

  • 한상문;정병철
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.43-56
    • /
    • 2005
  • 본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.

소프트웨어 공수 예측의 정확성에 대한 이상치 제거의 영향 분석 (Analyzing Influence of Outlier Elimination on Accuracy of Software Effort Estimation)

  • 서영석;윤경아;배두환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.589-599
    • /
    • 2008
  • 정확한 소프트웨어 공수 예측은 소프트웨어 관련 여러 커뮤니티들에서 예전부터 항상 이슈가 되어 왔다. 소프트웨어 공수 예측의 정확도를 향상시키기 위해 지금까지 많은 연구들에서는 데이타 품질이 공수 예측에 중요한 요소들 중 하나임에도 불구하고 이것에 대한 고려 없이 공수 예측 기법들에만 초점을 맞추어 왔다. 본 연구에서는 소프웨어어 공수 예측 기법과 이상치 제거 기법들 사이의 영향 관계를 공수 예측 정확도의 관점에서 실험적으로 살펴본다. 두 개의 프로젝트 데이타들(ISBSG와 국내의 한 금융 조직으로부터 수집된 데이타)에 대해 일반적으로 많이 사용되는 세 가지 공수 예측 기법(최소제곱법, 신경망 네트워크, 그리고 베이지안 네트워크)과 두 가지 이상치 제거 기법(최소절사제곱법과 K-means 클러스터링)을 적용시켜 결과들을 서로 비교해 보고 이상치 제거 기법을 적용하지 않은 결과와도 비교해 본다.

기업의 R&D 투자 결정요인 분석 - 준모수적 추정법을 적용하여 - (Analysing the Determinants of Company R&D Investment Using a Semi-parametric Estimation Method)

  • 유승훈
    • 기술혁신학회지
    • /
    • 제6권3호
    • /
    • pp.279-297
    • /
    • 2003
  • The purpose of this paper is to analyze the determinants of company R&D investment with zero observations by using the data of R&D Scoreboard published by Ministry of Science and Technology(2002). Conventional parametric approach to dealing with zero investments is not robust to heteroscedastic and/or non-normal error structure. Thus, this study applies symmetrically trimmed least squares(STLS) estimation as a semi-parametric approach to dealing with zero R&D investments. The result of specification test indicates the semi-parametric approach outperforms the parametric approach significantly. Moreover, the results of the study provide various implications as summarized below. The R&D investment of IT company is larger than that of non-IT company. The R&D investment has a positive relation to foreigners' investment ratio. The higher degree of financial self-reliance is, the larger the R&D investment is. Firm size variables such as sales amount and the number of workers are positively related to R&D investment. The sales elasticity of R&D investment is larger than one. However, the workers elasticity of R&D investment is smaller than one.

  • PDF