Abstract
Transparent conducting oxide films like ITO/Au/ITO and AZO/Au/AZO were fabricated with a sputter at a low-temperature of less then $70^{\circ}C$ and their crystallization and opto-electrical properties were studied. X-ray diffractiometry showed that single-ITO layer was amorphous, whereas, ITO of ITO/Au/ITO multi-layer was crystal. The ITO crystallization and its orientation depended on Au crystallization. Surface roughness of the ITO-multi-layers were in the range of 29-88% of that of ITO-single layer. ITO on amorphous gold layer had more rough surface than ITO on crystal gold. The gold layer between ITO improved electrical conductivity. Carrier density, mobility, resistivity and sheet resistance of ITO-single layer were $2.3{\times}10^{19}/cm^3$, $85{\times}cm^2$/Vs, $31{\times}10^{-4}{\Omega}cm$, and $310{\times}{\Omega}/cm^2$, respectively. Those of ITO/Au/ITO-multi-layers depended on Au-interlayer-thickness, which were in the range of $3.6{\times}10^{19}{\sim}4.2{\times}10^{21}/cm^3$, $43{\sim}85cm^2$/Vs, $0.17{\times}10^{-4}{\sim}25{\times}10^{-4}{\Omega}cm$, and $1.7{\sim}20{\times}{\Omega}/cm^2$, respectively. The sheet resistances of the single-layer ITO and the multi-layer ITO were 310 and $2.7{\sim}21{\Omega}/cm^2$, respectively. That of AZO/Au/AZO was $8.6{\Omega}/cm^2$, which was better than the single-layer ITO.