DOI QR코드

DOI QR Code

Study on the Crystal Growth Behavior and Opto-Electrical Properties of Transparent Conducting Oxide Films with Au-Interlayer Fabricated by Using a Low-temperature Process

저온 박막 공정으로 제작된 Au 적층형 다층 투명전극의 결정성장 거동과 광-전기적 특성

  • 지영석 (선문대 공대 금속재료공학과) ;
  • 최용 (선문대 공대 전자재료공학과) ;
  • 이상헌 (선문대 공대 전자공학과)
  • Received : 2010.12.13
  • Accepted : 2010.12.27
  • Published : 2011.02.01

Abstract

Transparent conducting oxide films like ITO/Au/ITO and AZO/Au/AZO were fabricated with a sputter at a low-temperature of less then $70^{\circ}C$ and their crystallization and opto-electrical properties were studied. X-ray diffractiometry showed that single-ITO layer was amorphous, whereas, ITO of ITO/Au/ITO multi-layer was crystal. The ITO crystallization and its orientation depended on Au crystallization. Surface roughness of the ITO-multi-layers were in the range of 29-88% of that of ITO-single layer. ITO on amorphous gold layer had more rough surface than ITO on crystal gold. The gold layer between ITO improved electrical conductivity. Carrier density, mobility, resistivity and sheet resistance of ITO-single layer were $2.3{\times}10^{19}/cm^3$, $85{\times}cm^2$/Vs, $31{\times}10^{-4}{\Omega}cm$, and $310{\times}{\Omega}/cm^2$, respectively. Those of ITO/Au/ITO-multi-layers depended on Au-interlayer-thickness, which were in the range of $3.6{\times}10^{19}{\sim}4.2{\times}10^{21}/cm^3$, $43{\sim}85cm^2$/Vs, $0.17{\times}10^{-4}{\sim}25{\times}10^{-4}{\Omega}cm$, and $1.7{\sim}20{\times}{\Omega}/cm^2$, respectively. The sheet resistances of the single-layer ITO and the multi-layer ITO were 310 and $2.7{\sim}21{\Omega}/cm^2$, respectively. That of AZO/Au/AZO was $8.6{\Omega}/cm^2$, which was better than the single-layer ITO.

Keywords

References

  1. T. A. Chen, A. K. Y. Jen, and Y. Cai, Macromolecules, vol. 29, 1996, p. 535. https://doi.org/10.1021/ma9512566
  2. Y. M. Lee, Composites Processing Methods, Owenscorning MEMO Report, 04-m-50 (2004)
  3. K. Ichimira, and N. I. Oohara, J. of Polym. Chem. vol. 25, p. 3063 1987. https://doi.org/10.1002/pola.1987.080251111
  4. Y. Zhai, Q. Yang, R. Zhu, Y. Gu, J, Master. Sci., vol. 43, p. 338 2008, https://doi.org/10.1007/s10853-007-1697-4
  5. H. Gao, D. Wang, W. Jiang, Z. Jiang, Rapid Comun., vol. 28, p. 252 2007. https://doi.org/10.1002/marc.200600670
  6. K. L. Chopre, S. Major and D. K. Pandya, Thin Solid Films, vol. 102, p.1 1983 https://doi.org/10.1016/0040-6090(83)90256-0
  7. A. K. Kulkarni, K. H. Schulz, T. S. Lim and M. Khan, Thin Solid Films, vol. 345, p. 273 1999,. https://doi.org/10.1016/S0040-6090(98)01430-8
  8. M. Fahland, P. Karlsson, C. Charton, Thin Solid Films, vol. 392, p. 334 2001,. https://doi.org/10.1016/S0040-6090(01)01053-7
  9. 14. Y. Morinaga, K. Sakuragi, N. Fujimura, and T. Ito, J. Cryst. Growth, vol. 174, p. 691 1997. https://doi.org/10.1016/S0022-0248(97)00045-6
  10. H. Kostiln, R. Jost, W. Lens, Phy. Sat. Sol(a)., vol. 29, p. 87, 1975. https://doi.org/10.1002/pssa.2210290110
  11. Y. Takashima, K. Sasaki, T. Hata and A. H. M. Zahirul Alam, Thin Solid Films, vol. 279, p. 131 1996. https://doi.org/10.1016/0040-6090(95)08166-6
  12. M. Bender, W. Seeling, C. Daude, H. Frankenberger, B. Ocker and J. Stollenwerk, Thin Solid Films, vol. 326(1,2), p. 67 1998.. https://doi.org/10.1016/S0040-6090(98)00520-3
  13. J. K. Lee, J. H. Choy and Y. Choi, Surface Science, vol. 256, p. 147 1991. https://doi.org/10.1016/0039-6028(91)91210-O
  14. J. K. Lee and W. Tao, Acta Met., vol. 42, p. 569 1995.
  15. J. K. Lee, "An Instability Analysis of Heteroepitaxial Interfaces via a Discrete Atom Method", in Dynamics of Crystal surfaces and Interfaces, ed. P.M. Duxbury and T. Pence, Plenum Press, New York, NY, pp. 125-134, 1997.